-
光学天线口径的选取关系着激光发射准直单元和光纤耦合单元的参数设计,口径过大会增加非相干信号带来的噪声,也增加制造成本,而过小会导致只能接收部分回波信号,造成系统性能下降。下面基于相干激光测风雷达的载噪比(carrier-to-noise ratio, CNR)指标对天线口径进行分析。
相干激光测风雷达的载噪比可表示为信号平均功率与噪声平均功率的比值:
$ R_{{\mathrm{CNR}}}=\frac{\eta_{{\mathrm{t}}} \eta_{{\mathrm{s}}} E T^{2} \lambda \beta \pi D^{2}}{8 h B F_{{\mathrm{h}}} z^{2}} $
(1) 式中,ηs为系统光学透过率,E为发射激光能量,λ为激光波长,β为气溶胶后向散射系数,D为天线口径,h为普朗克常数,B为探测器带宽,Fh为额外噪声系数,z为探测距离,T为激光大气传输单程透过率,ηt为天线效率,是关于D的函数。
-
由(1)式可知,天线效率正比于系统载噪比,最大化天线效率就意味着最大化系统载噪比。定义天线效率ηt为激光发射截断效率ηe与回波接收耦合效率ηc的乘积,利用高斯光束场分布理论和菲涅耳衍射近似条件,天线效率可表示为:
$ \begin{array}{l} \eta_{{\mathrm{t}}}=\eta_{{\mathrm{e}}} \eta_{{\mathrm{c}}}= \\ \frac{128 F^{2}}{\rho^{4}} \int_{0}^{\infty}\left\{\sum\limits_{n=1}^{N} a_{n} \frac{1}{2\left(b_{n}+1 / \rho^{2}-{\mathrm{j}} F\right)} \times\right. \\ \left.\exp \left[-\frac{(2 F y)^{2}}{4\left(b_{n}+1 / \rho^{2}-{\mathrm{j}} F\right)}\right]\right\}^{2} \times\\ \left\{\sum\limits_{n=1}^{N} a_{n} \frac{1}{2\left(b_{n}+1 / \rho^{2}-{\mathrm{j}} F\right)} \times\right. \\ \left.\exp \left[-\frac{(2 F y)^{2}}{4\left(b_{n}+1 / \rho^{2}-{\mathrm{j}} F\right)}\right]\right\}^{* 2} y {\mathrm{d}} y \end{array} $
(2) 式中,an, bn为贝塞尔函数的级数展开系数,F为菲涅耳数,F=πD2/(4λz),ρ为光瞳截断比,ρ=2w0/D,w0是高斯光束在天线光瞳位置的e-2强度半径。
激光发射截断效率可表示为:
$ \eta_{{\mathrm{t}}}=\frac{\int_{0}^{D / 2} \exp \left[-\frac{2 x^{2}}{\rho^{2}(D / 2)^{2}}\right] x {\mathrm{d}} x}{\int_{0}^{\infty} \exp \left[-\frac{2 x^{2}}{\rho^{2}(D / 2)^{2}}\right] x {\mathrm{d}} x} $
(3) 利用(1)式、(2)式,可以先优化系统载噪比得到最优天线口径,再结合激光发射准直单元设计得到最大天线效率。对于光纤脉冲相干激光测风雷达系统,由于激光器、探测器等器件参数的限制,探测能力有所差异。根据目前市场上现有产品参数,选取λ=1.55μm,E=150μJ,β=4×10-7m-1·sr-1,B=200MHz,z=10km,ηs=64%,Fh=1.1,w0=82mm,可以得到系统载噪比与光学天线口径的变化曲线,如图 2所示。
由图 2可知,相干激光测风雷达进行远场探测时,系统载噪比随着天线口径先增大后减小,存在最优天线口径。当D < 100mm时,载噪比随天线口径的增大迅速增大,因为在激光发射功率一定的情况下,同一个系统接收的回波信号功率正比于天线口径;当D>100mm时,载噪比随天线口径的增大急剧下降,因为随着口径的增大,接收的噪声功率也迅速增大,相较回波信号占据了主导作用;当D>250mm时,系统载噪比的变化已趋于平缓,天线口径的变化对载噪比影响已经很小,此时光学天线的设计需要权衡天线重量、尺寸、价格等因素。
考虑现有相干激光测风雷达系统的最大测程可达10km~15km,而光瞳直径为百毫米量级,因此菲涅耳数很小,取F=0.5。由(2)式可得远场条件下天线效率与光瞳截断比的变化曲线,如图 3所示。
由图 3可知,对于相同的菲涅耳数,随着光瞳截断比的增大,天线效率先增大后减小,当ρ=0.82时,天线效率有最大值ηt=40.1%,此结果与国外系统设计结果比较吻合。天线效率取最大值时,高斯光束光斑直径并没有充满光瞳口径,因为高斯光束理论上是无限向外延伸的,而光学天线口径是有限的,若ρ=1,必然会损失部分激光发射能量,造成天线效率下降。
-
光纤脉冲相干激光测风雷达需要将大气后向散射的空间光耦合进光纤光路,但由于大气湍流的存在,导致激光传输过程中相干度下降,造成后向散射光在接收光瞳处形成散斑。
耦合效率可表示为耦合进光纤的平均光功率与天线接收到的平均光功率之比:
$ \begin{array}{c} \eta_{{\mathrm{c}}}=8 a^{2} \int_{0}^{1} \int_{0}^{1} \exp \left[-\left(a^{2}+b\right)\left(x^{2}+y^{2}\right)\right] \times \\ {\mathrm{J}}_{0}(2 b x y) x y {\mathrm{d}} x {\mathrm{d}} y \end{array} $
(4) 式中,J0为第1类零阶贝塞尔函数;a为耦合系数,a=πw0D/(2λf),f为系统焦距;b为散斑数。
利用(4)式可得耦合效率随耦合系数和散斑数的3维变化曲线,如图 4所示。
从图 4可以看出,耦合效率随散斑数的增加迅速减小,因为散斑数反映大气湍流对回波光信号的相干性影响,散斑数增大,相干度减小,所以耦合效率降低。当不考虑大气湍流,即b=0时,理论上若a=1.1,那么耦合效率存在最大值ηc=44%。实际应用中,大气湍流客观存在,所以b一定不为零。
定义散斑数为光学有效接收面积与空间相干面积的比值:
$ b=\frac{D^{2}}{4 r^{2}} $
(5) 式中,r为接收光瞳处的有效相干半径:
$ r=\left[\frac{1}{r_{0}^{2}}+\left(\frac{\pi w_{z}}{\lambda z}\right)^{2}\right]^{-1 / 2} $
(6) 式中,r0和wz分别为横向相干长度和目标位置的光斑半径,分别表示为:
$ r_{0}=\left[1.46 k^{2} \sec \theta \int_{0}^{z} C_{n}^{2}(x) {\mathrm{d}} x\right]^{-3 / 5} $
(7) $ w_{z}^{2}=w^{\prime 2}\left[\left(1-\frac{z}{R}\right)^{2}+\left(\frac{z}{z_{0}}\right)^{2}\right]+\left(\frac{\lambda z}{\pi r_{0}}\right) $
(8) 式中,k为波数,k=2π/λ;θ为天顶角;Cn2(x)为大气折射率结构常数;w′为无截断高斯光束在出瞳面的半径,w′=D/2;R为相位曲率半径;z0为瑞利距离。
Cn2(x)选取Hufnagel-Valley湍流模型,因为激光准直出射,所以R=∞,其它参数取值为λ=1.55μm,θ=45°,D=100mm,a=1.1,由(4)式~(8)式得到不同大气折射率结构常数条件下,耦合效率与探测距离的变化曲线,如图 5所示。
由图 5可知,当Cn2(x)=0m-2/3,即没有大气湍流或弱湍流时,耦合效率随探测距离的增大而增大,并在远场达到最大。湍流的存在导致相同探测距离处耦合效率的下降,这是因为湍流造成激光传输过程中光束平均截面积变宽,接收面相干半径变小。湍流越大,最大耦合效率对应的最佳探测距离越小,并且耦合效率在最佳探测距离附近变化陡峭,出现最大测程剧烈波动的现象。当Cn2(x)=10-16m-2/3,即中湍流时,最佳探测距离z=15.8km,在12.5km~19.9km范围内,耦合效率最大值基本不变;当Cn2(x)=10-15m-2/3,即强湍流时,最佳探测距离z=10.5km,只有在8.9km~11.2km范围内,耦合效率最大值才基本不变。
光纤脉冲相干激光测风雷达光学天线特性分析
Character analysis of fiber coherent LiDAR antenna
-
摘要: 为了提高光纤脉冲相干激光测风雷达性能,采用数学建模的方法来分析光学天线特性。利用后向传播本振原理,讨论光学天线口径对系统载噪比的影响,以及光瞳截断比对天线效率的影响; 提出光学接收耦合效率的定义,研究不同大气折射率结构常数条件对耦合效率和测程的影响;通过搭建实验平台,测量不同距离门内的载噪比和频谱强度等参数,验证了仿真结果。结果表明,当远场探测距离在7km~10km范围内变化时,天线最优口径为100mm,光瞳截断比最优值为0.8;相较弱湍流情况,强湍流会使同一系统测程下降近30%。此研究为光学天线的优化设计提供了理论依据。Abstract: In order to improve capability of a fiber coherent light detection and ranging (LiDAR), antenna characters were analyzed with modeling method. Based on the principle of backward propagating local light, the influence of antenna aperture on signal-to-noise ratio was discussed, and the influence of pupil truncation ratio on antenna efficiency was analyzed. The definition of coupling efficiency was proposed, and the influence of atmospheric refractive constant on d coupling efficiency and range was researched. By building experimental platform to obtain signal to noise ratio and frequency spectrum intensity in different distance gates, the simulation results were verified. The results show that when the range changes from 7km to 10km, the optimal antenna aperture and pupil truncation ratio were 100mm and 0.8, respectively. Moreover, compared with weak turbulence, strong turbulence makes range decrease by 30% for the same system. The research has important theoretical significance and practical value for optimized design of antenna.
-
Key words:
- laser technique /
- antenna /
- experiment analysis /
- atmospheric turbulence
-
[1] PENG T, JIANG Y, TAO G, et al. Influence of circulator parameters of coherent wind lidar on distance measurement [J]. Laser Technology, 2017, 41(2): 251-254 (in Chinese). [2] PARVIZI R, HARUNA S W, ALI N M, et al. Investigation on threshold power of stimulated Brillouin scattering in photonic crystal fiber [J]. International Journal for Light and Electron Optics, 2012, 123(13): 1149-1152. doi: 10.1016/j.ijleo.2011.07.043 [3] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber laser: Current status and future perspectives [J]. Journal of the Optical Society of America, 2010, B27(11): 63-92. [4] DIAO W F, ZHANG X, LIU J Q, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers [J]. Chinese Optics Letters, 2014, 12(7): 072801. doi: 10.3788/COL201412.072801 [5] KAMEYAMA S, ANDO T, ASAKA K, et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing [J]. Applied Optics, 2007, 46(11): 1953-1962. doi: 10.1364/AO.46.001953 [6] CARIOU J P, AUGERE B, VALLA M. Laser source requirements for coherent lidars based on fiber technology [J]. Comptes Rendus Physique, 2006, 7(2): 213-223. doi: 10.1016/j.crhy.2006.03.012 [7] FENG L T, GUO H Q, CHEN Y, et al. Experiment of all fiber Doppler lidar at 1.55μm [J]. Infrared and Laser Engineering, 2011, 40(5): 844-847(in Chinese). [8] JENNESS J R, LYSAK D B, PHILBRICK R, et al. Design of a lidar receiver with fiber optic output [J]. Applied Optics, 1997, 36(18): 4278-4284. doi: 10.1364/AO.36.004278 [9] KIN P C, DENNIS K K, NOBUO S. Heterodyne Doppler 1μm lidar measurement of reduced effective telescope aperture due to atmosphe-ric turbulence [J]. Applied Optics, 1991, 30(18): 2617-2627. doi: 10.1364/AO.30.002617 [10] YANG H Zh, ZHAO C M, ZHANG H Y, et al. Design and optrmization of all-fiber lidar transmitting and receiving optical system [J]. Acta Optica Sinica, 2016, 36(11): 1106005(in Chinese). doi: 10.3788/AOS201636.1106005 [11] JIA X D, SUN D S, SHU Zh F, et al. Optmal design of the telescope in coherent lidar and detection performance analysis [J]. Acta Optica Sinica, 2015, 35(3): 0301001(in Chinese). doi: 10.3788/AOS201535.0301001 [12] ZHANG F F, XIA H Y, SUN D S. Speed detection of hard targets based on 1.55μm coherent lidar systems [J]. Laser Technology, 2012, 36(5): 602-606 (in Chiness). [13] BU Zh Ch, GUO P, CHEN S Y, et al. Optimization analysis of telescope aperture and truncation factor of coherent LiDAR [J]. Infrared and Laser Engineering, 2014, 43(3): 694-699 (in Chinese).