-
多光谱测温方法建立在普朗克定律、维恩位移定律和斯蒂芬-玻尔兹曼定律三大黑体辐射定律之上[17]。
普朗克于1900年提出黑体辐射定律,揭示了不同温度下的热力学温度T、波长λ和黑体辐射出射度Mλ, T的关系[18], 可表示为下式:
$ M_{\lambda, T}=C_1 \lambda^{-5}\left\{\exp \left[C_2 /(\lambda T)\right]-1\right\}^{-1} $
(1) 式中, C1是第一普朗克常数,C1=3.7418×104W· μm4/cm2; C2是第二普朗克常数,C2=1.4388×104μm· K。
假设测温仪器有n个光谱通道,每个光谱通道进行光电转换后的电压值记为Vi,则有第i个通道输出电压值Vi的表达式如下:
$ \begin{gathered} V_i=A_{\lambda_i} \varepsilon\left(\lambda_i, T\right) \frac{1}{\lambda_i{ }^5\left\{\exp \left[\left(C_2 /\left(\lambda_i T\right)\right]-1\right\}\right.}, \\ (i=1, 2, \cdots, n) \end{gathered} $
(2) 式中, Aλi为检定常量,只与光谱通道有关; ε(λi, T)为高温目标的发射率[19]。
将其中的exp[C2/(λiT)]-1等效为exp[C2/(λiT)],则经变换, (2)式改写为:
$ \ln \frac{V_i \lambda_i{ }^5}{A_{\lambda_i}}=-\frac{C_2}{\lambda_i T}+\ln \left[\varepsilon\left(\lambda_i, T\right)\right] $
(3) 将假定的发射率m阶模型代入(3)式中可得:
$ \begin{gathered} \ln \frac{V_i \lambda_i{ }^5}{A_{\lambda_i}}=-\frac{C_2}{\lambda_i T}+a_1 \lambda_i+a_2 \lambda_i{ }^2+\cdots+ \\ a_m \lambda_i{ }^m+a_0, (i=1, 2 \cdots, n ; m \leqslant n-2) \end{gathered} $
(4) 设$Y_i=\ln \frac{V_i \lambda_i^5}{A_{\lambda_i}}, a_{m+1}=-\frac{C_2}{T}, X_{m+1, i}=\frac{1}{\lambda_i}$, X1, i=λi, Xm, i=λim,则有下式:
$ Y_i=a_0+a_1 X_{1, i}+\cdots+a_{m+1} X_{m+1, i} $
(5) 因为测量n个光谱通道,所以会获得n个方程。利用求解方程式的办法即可求得目标的真实温度和光谱发射率。
-
本装置标定实验中采用标准高温辐射源进行标定。首先将标准高温辐射源加热至1000℃,当温度保持恒定时, 记录各个波段的光电探头的电压值,重复3次, 取各个电压的平均值记录下来, 并将这组电压值写入到算法的标定系数中。各通道对应的光电探头电压值如表 1所示。
Table 1. Photoelectric probe voltage value
wavelength/nm voltage value/V 735 2.26 850 2.22 980 1.88 1550 2.13 -
根据实验室现有条件,选用发射率不确定的马弗炉作为采集目标。马弗炉的观察窗中轴线上添加一块反射镜,用来反射辐射光信号,从而达到保护设备的目的。整体实验示意如图 8所示。
本次实验准直镜头距离马弗炉的距离固定为50cm,接收位置为马弗炉中心轴线。加热马弗炉至特定温度,关闭电源停止加热,这样做的目的是为了防止马弗炉内部的加热硅钼棒本身热辐射信号对马弗炉内热辐射信号造成干扰。1min~2min待硅钼棒降温到与马弗炉内部温度一致后, 通过本文中研制的高速多光谱辐射测温系统对马弗炉内部温度进行测量。马弗炉内置热电偶可以对马弗炉内温度进行接触式精密测温,以热电偶测的温度作为马弗炉内真实温度。设定马弗炉为不同温度进行多光谱辐射测温实验,真实温度和测得温度的误差如表 2所示。
Table 2. Measured temperature and true temperature
true temperature/℃ measured temperature/℃ error/% 850 824.819 -0.88 853 842.514 -0.23 860 865.197 +0.60 870 875.926 +0.68 880 887.605 +0.86 890 897.425 +0.83 912 920.986 +0.99 922 930.674 +0.94 1084 1088.854 +0.45 从上述实验结果可知,对不同温度的测量结果误差都在±1%以内。
-
光学模块分光装置是由分束光纤(一分七)和滤光片组成。光信号在此器件中以光速进行传播,所以在光学分光装置中响应时间基本可以忽略,反而在光电转换模块中,感光元件和放大器这些电学元器件存在信号传输带宽限制。
对于热辐射信号的采集和处理,本质上来说就是对高速变化的光信号进行采集和处理。受限于实验室条件, 没有纳秒级温度变化的高温辐射源,故实验中采用20MHz正弦波调制敏光科技高速红外激光管LSDLD155,产生一个调制光信号模拟高速变化温度场的辐射信号。利用研制的高速微弱光信号采集处理模块对调制光信号进行采集,并接入示波器,示波器输出结果如图 9所示。结果表明,微弱光信号采集处理模块能够响应带宽20MHz的正弦波调制光信号,上升时间为14.4ns,证明本系统能够对频率20MHz的快速变化光信号进行采集。
高速多光谱辐射测温系统研制
Development of high-speed multi-spectral radiation temperature measurement system
-
摘要: 为了解决非接触测温系统中常见的成本高昂、系统复杂、实用性差、响应速度慢等问题,采用多光谱测温和快速响应光电探测技术,设计了一套低成本高速多光谱辐射测温系统。利用高速微弱光信号采集模块、高速模数转换芯片、高性能可编程门阵列和同步动态随机存取内存保证了微弱光信号的高速转换、同步采集、大容量缓存,具备纳秒级变化温度场的测量能力。结果表明,测温误差小于±1%, 时间分辨率可达到50ns。这一结果对于快速变化温度场的测量是有帮助的。Abstract: In order to solve the problems of high cost, complex system, poor practicability, and slow response speed in common non-contact temperature measurement systems, multi-spectral temperature measurement and fast-response photoelectric detection technology were adopted, and a low-cost and high-speed multi-spectral radiation temperature measurement system was designed. By using the high-speed weak optical signal acquisition module, high-speed analog-to-digital conversion chip, high-performance field-programmable gate array, and synchronous dynamic random-access memory, ensures the high-speed conversion, synchronous acquisition, large-capacity buffering of weak optical signals and the ability to measure temperature field changes in nanoseconds can be obtained. The results show that, temperature measurement error is less than ±1% and time resolution can reach 50ns. This result is helpful for the measurement of rapidly changing temperature field.
-
Table 1. Photoelectric probe voltage value
wavelength/nm voltage value/V 735 2.26 850 2.22 980 1.88 1550 2.13 Table 2. Measured temperature and true temperature
true temperature/℃ measured temperature/℃ error/% 850 824.819 -0.88 853 842.514 -0.23 860 865.197 +0.60 870 875.926 +0.68 880 887.605 +0.86 890 897.425 +0.83 912 920.986 +0.99 922 930.674 +0.94 1084 1088.854 +0.45 -
[1] LI J, PANG Q Ch, REN K H, et al. Instantaneous multi-spectral explosion temperature measurement system[J]. Acta Photonica Sinica, 2000, 29(10): 937-941(in Chinese). [2] SUN X G, LI Ch W, DAI J M, et al. Review on the theory of multi-spectral radiation thermometry[J]. Acta Metrology, 2002, 23(4): 248-250(in Chinese). [3] LADACI A, CHEYMOL G, MASKROT H, et al. Measurement of reactor core temperature using multispectral infrared pyrometry in accidental conditions[J]. The European Physical Journal Conferences, 2020, 225(9): 1-2. [4] XIE Q J, LUO J, CHENG Sh. Survey of invasive temperature measurement technology[J]. China Instruments, 2017(8): 48-53(in Chinese). [5] WANG Zh X. Development of multi-point and multi-wavelength high temperature measurement system[D]. Harbin: Harbin Institute of Technology, 2019 : 2-3 (in Chinese). [6] ZHOU Y H. Research on temperature monitoring method and application based on the principle of CCD image sensing[D]. Qinhuangdao: Yanshan University, 2010: 9-10(in Chinese). [7] WANG P, HAO X J, ZHOU H Ch, et al. Colorimetric temperature measurement device based on magnesium alloy ignition point test[J]. Laser Technology, 2014, 38(4): 459-462(in Chinese). [8] WANG W G. Overview of radiation temperature measurement technology[J]. Aerospace Measurement Technology, 2005, 25(4): 20-24(in Chinese). [9] ZHANG Z W. Research on multi-spectral radiation temperature measurement technology based on infraredspectrometer[D]. Harbin: Harbin Institute of Technology, 2020: 10-11(in Chinese). [10] HU A, TAN W, SHU Q. Application of image processing in visible light temperature measurement[J]. Industrial Control Computers, 2019, 32(4): 105-106(in Chinese). [11] YANG Y L, LIU A X, MA C H, et al. Analysis of infrared temperature measurement model of molten steel based on infrared CCD[J]. Laser Technology, 2018, 42(4): 562-566(in Chinese). [12] WANG J Zh. Research on the key technology of multi-spectral temperature measurement system based on prism[D]. Harbin: Harbin Engineering University, 2015: 17-18(in Chinese). [13] TANG Zh, KANG M L, PANG H J. Design of infrared imaging system with multiple video interfaces based on FPGA[J]. Sensors and Microsystems, 2020, 39(4): 96-98(in Chinese). [14] MA D. Research on high-speed multi-spectral reproduction system based on FPGA+DSP[J]. Laser Journal, 2019, 40(11): 33-36(in Chinese). [15] MA J G. The status quo and development trend of CCD and CMOS image sensors[J]. Electronic Technology and Software Engineering, 2017(13): 103(in Chinese). [16] LIANG F. Design of high-speed image acquisition system based on CMOS imagesensor[D]. Taiyuan: North University of China, 2020: 2-5(in Chinese). [17] ZHANG F C. Research on multi-spectral true temperature inversion algorithm based on optimization principle[D]. Harbin: Harbin Engineering University, 2015: 18-19 (in Chinese). [18] HUA B, XU H Y. Development and application of non-contact temperature measurement technology in the combustionprocess[J]. Instrumentation and Analysis Monitoring, 2021(2): 22-26 (in Chinese). [19] CHENG Z Q. Radiation measurement method of truetemperature[D]. Hefei: University of Science and Technology of China, 2018: 15-16(in Chinese). [20] BRISEBOIS G. Operational amplifier LTC6268 gives new light to optoelectronicapplications[J]. China Electronics Market (Basic Electronics), 2017(9): 21-26(in Chinese). [21] ZHAO Zh W, ZHANG Y J, SHEN Ch, et al. Design of a photoelectric conversion system for pulse laser fuze[J]. Laser Technology, 2012, 36(3): 326-329 (in Chinese).