高级检索

高速多光谱辐射测温系统研制

田泽礼, 牛春晖, 陈青山

田泽礼, 牛春晖, 陈青山. 高速多光谱辐射测温系统研制[J]. 激光技术, 2022, 46(6): 773-778. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.010
引用本文: 田泽礼, 牛春晖, 陈青山. 高速多光谱辐射测温系统研制[J]. 激光技术, 2022, 46(6): 773-778. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.010
TIAN Zeli, NIU Chunhui, CHEN Qingshan. Development of high-speed multi-spectral radiation temperature measurement system[J]. LASER TECHNOLOGY, 2022, 46(6): 773-778. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.010
Citation: TIAN Zeli, NIU Chunhui, CHEN Qingshan. Development of high-speed multi-spectral radiation temperature measurement system[J]. LASER TECHNOLOGY, 2022, 46(6): 773-778. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.010

高速多光谱辐射测温系统研制

详细信息
    作者简介:

    田泽礼(1996-),男,硕士研究生,现主要从事光电对抗技术的研究

    通讯作者:

    牛春晖, E-mail: niuchunhui@bistu.edu.cn

  • 中图分类号: TH811

Development of high-speed multi-spectral radiation temperature measurement system

  • 摘要: 为了解决非接触测温系统中常见的成本高昂、系统复杂、实用性差、响应速度慢等问题,采用多光谱测温和快速响应光电探测技术,设计了一套低成本高速多光谱辐射测温系统。利用高速微弱光信号采集模块、高速模数转换芯片、高性能可编程门阵列和同步动态随机存取内存保证了微弱光信号的高速转换、同步采集、大容量缓存,具备纳秒级变化温度场的测量能力。结果表明,测温误差小于±1%, 时间分辨率可达到50ns。这一结果对于快速变化温度场的测量是有帮助的。
    Abstract: In order to solve the problems of high cost, complex system, poor practicability, and slow response speed in common non-contact temperature measurement systems, multi-spectral temperature measurement and fast-response photoelectric detection technology were adopted, and a low-cost and high-speed multi-spectral radiation temperature measurement system was designed. By using the high-speed weak optical signal acquisition module, high-speed analog-to-digital conversion chip, high-performance field-programmable gate array, and synchronous dynamic random-access memory, ensures the high-speed conversion, synchronous acquisition, large-capacity buffering of weak optical signals and the ability to measure temperature field changes in nanoseconds can be obtained. The results show that, temperature measurement error is less than ±1% and time resolution can reach 50ns. This result is helpful for the measurement of rapidly changing temperature field.
  • Figure  1.   Structure diagram of multi-spectral temperature measurement system

    Figure  2.   Physical image of multi-spectral temperature measurement system

    Figure  3.   Light path diagram of multi-spectral temperature measurement system

    Figure  4.   Interactive interface

    Figure  5.   Block diagram of weak current signal detection circuit

    图  6   Photoelectric conversion module physical map

    Figure  7.   Data acquisition and processing module structure diagram

    Figure  8.   Schematic diagram of the experiment

    Figure  9.   Bandwidth test result diagram

    Table  1   Photoelectric probe voltage value

    wavelength/nm voltage value/V
    735 2.26
    850 2.22
    980 1.88
    1550 2.13
    下载: 导出CSV

    Table  2   Measured temperature and true temperature

    true temperature/℃ measured temperature/℃ error/%
    850 824.819 -0.88
    853 842.514 -0.23
    860 865.197 +0.60
    870 875.926 +0.68
    880 887.605 +0.86
    890 897.425 +0.83
    912 920.986 +0.99
    922 930.674 +0.94
    1084 1088.854 +0.45
    下载: 导出CSV
  • [1]

    LI J, PANG Q Ch, REN K H, et al. Instantaneous multi-spectral explosion temperature measurement system[J]. Acta Photonica Sinica, 2000, 29(10): 937-941(in Chinese).

    [2]

    SUN X G, LI Ch W, DAI J M, et al. Review on the theory of multi-spectral radiation thermometry[J]. Acta Metrology, 2002, 23(4): 248-250(in Chinese).

    [3]

    LADACI A, CHEYMOL G, MASKROT H, et al. Measurement of reactor core temperature using multispectral infrared pyrometry in accidental conditions[J]. The European Physical Journal Conferences, 2020, 225(9): 1-2.

    [4]

    XIE Q J, LUO J, CHENG Sh. Survey of invasive temperature measurement technology[J]. China Instruments, 2017(8): 48-53(in Chinese).

    [5]

    WANG Zh X. Development of multi-point and multi-wavelength high temperature measurement system[D]. Harbin: Harbin Institute of Technology, 2019 : 2-3 (in Chinese).

    [6]

    ZHOU Y H. Research on temperature monitoring method and application based on the principle of CCD image sensing[D]. Qinhuangdao: Yanshan University, 2010: 9-10(in Chinese).

    [7]

    WANG P, HAO X J, ZHOU H Ch, et al. Colorimetric temperature measurement device based on magnesium alloy ignition point test[J]. Laser Technology, 2014, 38(4): 459-462(in Chinese).

    [8]

    WANG W G. Overview of radiation temperature measurement technology[J]. Aerospace Measurement Technology, 2005, 25(4): 20-24(in Chinese).

    [9]

    ZHANG Z W. Research on multi-spectral radiation temperature measurement technology based on infraredspectrometer[D]. Harbin: Harbin Institute of Technology, 2020: 10-11(in Chinese).

    [10]

    HU A, TAN W, SHU Q. Application of image processing in visible light temperature measurement[J]. Industrial Control Computers, 2019, 32(4): 105-106(in Chinese).

    [11]

    YANG Y L, LIU A X, MA C H, et al. Analysis of infrared temperature measurement model of molten steel based on infrared CCD[J]. Laser Technology, 2018, 42(4): 562-566(in Chinese).

    [12]

    WANG J Zh. Research on the key technology of multi-spectral temperature measurement system based on prism[D]. Harbin: Harbin Engineering University, 2015: 17-18(in Chinese).

    [13]

    TANG Zh, KANG M L, PANG H J. Design of infrared imaging system with multiple video interfaces based on FPGA[J]. Sensors and Microsystems, 2020, 39(4): 96-98(in Chinese).

    [14]

    MA D. Research on high-speed multi-spectral reproduction system based on FPGA+DSP[J]. Laser Journal, 2019, 40(11): 33-36(in Chinese).

    [15]

    MA J G. The status quo and development trend of CCD and CMOS image sensors[J]. Electronic Technology and Software Engineering, 2017(13): 103(in Chinese).

    [16]

    LIANG F. Design of high-speed image acquisition system based on CMOS imagesensor[D]. Taiyuan: North University of China, 2020: 2-5(in Chinese).

    [17]

    ZHANG F C. Research on multi-spectral true temperature inversion algorithm based on optimization principle[D]. Harbin: Harbin Engineering University, 2015: 18-19 (in Chinese).

    [18]

    HUA B, XU H Y. Development and application of non-contact temperature measurement technology in the combustionprocess[J]. Instrumentation and Analysis Monitoring, 2021(2): 22-26 (in Chinese).

    [19]

    CHENG Z Q. Radiation measurement method of truetemperature[D]. Hefei: University of Science and Technology of China, 2018: 15-16(in Chinese).

    [20]

    BRISEBOIS G. Operational amplifier LTC6268 gives new light to optoelectronicapplications[J]. China Electronics Market (Basic Electronics), 2017(9): 21-26(in Chinese).

    [21]

    ZHAO Zh W, ZHANG Y J, SHEN Ch, et al. Design of a photoelectric conversion system for pulse laser fuze[J]. Laser Technology, 2012, 36(3): 326-329 (in Chinese).

图(9)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-11-30
  • 发布日期:  2022-11-24

目录

    /

    返回文章
    返回