高级检索

泽尔尼克多项式拟合波面中采样点数目的研究

谢苏隆, 钟鹰

谢苏隆, 钟鹰. 泽尔尼克多项式拟合波面中采样点数目的研究[J]. 激光技术, 2011, 35(2): 272-274,277. DOI: 10.3969/j.issn.1001-3806.2011.02.035
引用本文: 谢苏隆, 钟鹰. 泽尔尼克多项式拟合波面中采样点数目的研究[J]. 激光技术, 2011, 35(2): 272-274,277. DOI: 10.3969/j.issn.1001-3806.2011.02.035
XIE Su-long, ZHONG Ying. Research of sampling point number in wave front fitting with Zernike polynomials[J]. LASER TECHNOLOGY, 2011, 35(2): 272-274,277. DOI: 10.3969/j.issn.1001-3806.2011.02.035
Citation: XIE Su-long, ZHONG Ying. Research of sampling point number in wave front fitting with Zernike polynomials[J]. LASER TECHNOLOGY, 2011, 35(2): 272-274,277. DOI: 10.3969/j.issn.1001-3806.2011.02.035

泽尔尼克多项式拟合波面中采样点数目的研究

详细信息
    作者简介:

    谢苏隆(1977- ),男,博士研究生,主要研究方向为航天器的设计.

    通讯作者:

    钟鹰,E-mail:xsllinlin@163.com

  • 中图分类号: TH703

Research of sampling point number in wave front fitting with Zernike polynomials

  • 摘要: 为了研究采样点数目对由泽尔尼克多项式所拟合的波面的拟合精度的影响,采用不完全归纳法进行了理论分析,取得了数十个不同的测试函数的采样点与拟合精度之间的数据关系。结果表明,不同的测试函数遵循相同的规律,即采样点数目达到一定数目后,拟合精度随采样点的变化很小;并通过计算得到了在较高拟合精度时,采样点数目与泽尔尼克多项式的项数之间的变化规律,由此得到相关的采样点数目确定的经验公式。这对于泽尔尼克多项式拟合波面具有很好的指导意义。
    Abstract: In order to study the effect of sampling point number on fitting precision when fitting wave front by Zernike polynomials,it was analyzed by means of the method of inadequate induction,and then the change law of sampling point number and fitting precision of dozens of different test functions was obtained.The results reveal that all test functions follow the same law that fitting precision has little change when sampling point number reach a certain number.In addition,the change law of sampling point number and Zernike polynomials term number was obtained by calculation.Thus,the experiential formula to determinate sampling point number are found,which is of great practical instructional significance in wave front fitting with Zernike polynomials.
  • [1]

    YANG H F,JIANG Z F.Research of Zernike modal wavefront reconstruction of 19-element Hartmann-Shack wavefront sensor[J].Laser Technology,2005,29(5):484-487(in Chinese).

    [2]

    HOU X,WU F,YANG L,et al.Wavefront fitting with Zernike annular polynomials for circular and annular pupils[J].Infrared and Laser Engineering,2006,35(5):523-526(in Chinese).

    [3]

    LUO Zh F,CHENG H X,DING L.Wavefront measurement and reconstruction of small phase-distortion on laser beam[J].Laser Journal,2006,27(3):35-36(in Chinese).

    [4]

    HOU X,WIT F,YANG L,et al.Effect analysis of edge errors in wavefront fitting with zernike polynomials[J].Infrared and Laser Engineering,2006,35 (s2):89-94 (in Chinese).

    [5]

    DUAN H F,YANG Z P,WANG Sh Q,et al.Model wavefront reconstruction of Shack-Hartmann sensor on arbitrary area and wavefront expression by zernike polynomials[J].Chinese Journal of Lasers,2002,29(6):66-70(in Chinese).

    [6]

    YANG P,AO M W,LIU Y,et al.Adaptive optics genetic algorithm based on zernike mode coefficients[J].Chinese Journal of Lasers,2008,35 (3):11-16 (in Chinese).

    [7]

    HOU X,WU F,YANG L,et al.Optimum analysis of seidel aberrations calculated with Zemike circle polynomials for the obscured aspherieal primary mirror[J].Journal of Optoeiectrunics·laser,2006,17(5):568-572(in Chinese).

    [8]

    LIU J P,LIANG L P,JIN Sh L,et al.Testing large curvature surface of optical element with spatial carrier heterodyne interferometry[J].Infrared and Laser Engineering,2009,38(1):134-139(in Chinese).

    [9]

    WANG F G,YANG H B,LI H Zh,et al.Application and algorithm research of active optics in thin mirrors[J].Infrared Technology,2007,29(12):704-707(in Chinese).

    [10]

    QI Y Ch,AN Y,JIN G,et al.Optical/mechanical integration of hyper-thin membrane mirror with large aperture[J].Semiconductor Optoelectronics,2006,27 (5):563-565 (in Chinese).

    [11]

    WANG Zh Y,WU Zh H.Using binary optical phase plate to correct the error of intederometer[J].Journal of Optcelectronics·Laser,1995,6(6):369-375(in Chinese).

计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-11
  • 修回日期:  2010-05-03
  • 发布日期:  2011-03-24

目录

    /

    返回文章
    返回