高级检索

基于裂变自举粒子滤波的红外目标跟踪处理

王其华, 叶苗

王其华, 叶苗. 基于裂变自举粒子滤波的红外目标跟踪处理[J]. 激光技术, 2011, 35(1): 141-144. DOI: 10.3969/j.issn.1001-3806.2011.01.038
引用本文: 王其华, 叶苗. 基于裂变自举粒子滤波的红外目标跟踪处理[J]. 激光技术, 2011, 35(1): 141-144. DOI: 10.3969/j.issn.1001-3806.2011.01.038
WANG Qi-hua, YE Miao. Infrared target tracking based on fissile bootstrap particle filters[J]. LASER TECHNOLOGY, 2011, 35(1): 141-144. DOI: 10.3969/j.issn.1001-3806.2011.01.038
Citation: WANG Qi-hua, YE Miao. Infrared target tracking based on fissile bootstrap particle filters[J]. LASER TECHNOLOGY, 2011, 35(1): 141-144. DOI: 10.3969/j.issn.1001-3806.2011.01.038

基于裂变自举粒子滤波的红外目标跟踪处理

详细信息
    作者简介:

    王其华(1975-),男,讲师,硕士,主要从事红外光学成像处理方面的研究工作 E-mail:w99170071@yahoo.com.cn

  • 中图分类号: TN911.73

Infrared target tracking based on fissile bootstrap particle filters

  • 摘要: 为了研究解决粒子滤波算法的粒子枯竭现象和计算量大的问题,采用了一种裂变自举粒子滤波方法。该方法在测量时对粒子进行裂变自举,其过程为大权值的粒子进行裂变繁殖,裂变繁殖后的粒子数目则正比裂变繁殖前的粒子,然后覆盖粒子群中的小权值的粒子,粒子预平滑处理,同时保持粒子群的特性,再次重抽样中进行粒子防枯竭函数补偿,设置恰当的抽样门限,淘汰权值较低的抽样点,并在保持样本点总数的前提下从权值较高的抽样点中衍生出多个子抽样点,在模型中给出了粒子跟踪均方根误差以及算法步骤,得到了跟踪最佳处理效果。实验仿真用MATLAB语言编程,结果表明,该算法的均方误差为0.36445,优于基本粒子滤波。
    Abstract: In order to overcome the particle depletion phenomenon in the particle filter algorithm and the problem of heavy large amount of calculation, a fission bootstrap particle filtering method was used at the moment of measurement. At first, fissile breeding was carried out on the particles with big weights. The particles after fissile breeding are proportional to those before fissile breeding. Then the particles with small weights in the particle group were covered. The particle pre-smoothing was carried out with the characteristics of the particle group maintained. After sampling once again, the function of particle anti-depletion was compensated. An appropriate sampling threshold was set to eliminate the sampling points with smaller weights. Multiple sampling points were derived from the sampling points with bigger weights in the premise of maintaining the total number of sampling points. The root mean square (RMS) error and calculation steps were shown in the model and best tracking effect was obtained. Simulation was carried out with MATLAB. The results show that the RMS error of the algorithm is 0.36445, better than that of the basic particle filtering algorithm.
  • [1]

    CAI L,MA X K.Frequency limitations of log-domain current-mode bandpass filters[J].Journal of Xi'an Jiaotong University,2003,37(10):1075-1078(in Chinese).

    [2]

    HUANG W J,MA Q,WANG L Q.A particle swarm optimization extended Kalman particle filter [J].Journal of Tianjin University of Technology,2009,25(5):50-53(in Chinese).

    [3]

    YUAN Z J,ZHENG N N,JIA X Ch.The Gauss-Hermite particle filter[J].Acta Electronica Sinica,2003,31(7):970-973(in Chinese).

    [4]

    CHENG Sh Y,ZHANG J Y.Particle filter review[J].Journal of Astronautics,2008,29(4):1099-1111(in Chinese).

    [5]

    XU M L,XU W B,HE Sh.Experience improving particle swarm optimizer[J].Computer Engineering and Applications,2008,44(31):87-89(in Chinese).

    [6]

    LIU J,DONG Y N.An object tracking algorithm based on prediction and particle filtering[J].Computer Engineering and Science ,2009,31(10):30-32(in Chinese).

    [7]

    WANG Y P.Remedy of subsample nonresponse in two-phase sampling[J].Science Technology and Engineering,2009(1):94-96(in Chinese).

    [8]

    CHENG Sh Y,ZHANG J Y.Fission bootstrap particle filtering[J].Acta Electronica Sinica,2008,36(3):500-504(in Chinese).

    [9]

    ZHENG J,XU Y,BO Q L.Zerotree quantization coding scheme based on wavelet transform with lifting scheme[J].Journal of PLA University of Science and Technology(Natural Science Edition),2002,3(2):26-30(in Chinese).

    [10]

    CHENG Sh Y,ZHANG J Y.Limited convergence bound in particle filtering algorithms[J].Journal of Data Acquisition and Processing,2008,23(4):481-485(in Chinese).

    [11]

    WU S T,ZHANG Y X,CHEN H E.Approach for adaptive filter of systems with random changing structures[J].Journal of Beijing University of Aeronautics and Astronautics,2002,28(3):287-290(in Chinese).

    [12]

    DAI R.Maneuvering target tracking in clutter environment simulation[J].Information Command Control System Simulation Technology,2001(12):33-39(in Chinese).

    [13]

    KOTECHA J H,DJURIC P M.Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10):2592-2601.

    [14]

    KOTECHA J H,DJURIC P M.Gaussian sum particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10):2602-2611.

计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-24
  • 修回日期:  2010-03-08
  • 发布日期:  2011-01-24

目录

    /

    返回文章
    返回