氧碘化学激光器射流数值模拟方法研究
Numerical simulation of COIL injection
-
摘要: 为了研究氧碘化学激光器喷流流场流动情况,采用数值方法求解二维可压缩非定常Navier-Stokes方程及组分连续方程,空间离散格式为AUSM+up格式,用四步龙格-库塔方法作显式时间推进,湍流粘性系数使用k-ε两方程湍流模型进行求解。假设混合气体为热力学完全而热值非完全气体,化学反应模型采用有限速率反应模型。使用一种松弛迭代的方法来处理化学源项的刚性问题。计算了一个标准算例,结果与美国GASP程序计算结果符合良好。对氧碘化学激光器流场进行了二维数值模拟,研究了该激光器中激发态氧初始产额、水蒸气含量以及不同喷管数目对增益分布的影响。结果表明,除水和增加激发态氧初始产额都可使小信号平均增益增大,采用两个碘喷管比采用一个碘喷管能够获得更大的小信号平均增益。Abstract: In order to study the injection field of a chemical oxygen iodine laser(COIL),the injection flows in supersonic COIL were simulated by solving the Reynolds averaged Navier-Stokes equations and species continuity equations based on four-stage Runge-Kutta time-stepping scheme on structured viscous mesh.The simulations were carried out with AUSM+up scheme employing the k-ε turbulence model.The finite-rate reaction model was employed with thermodynamic perfect gas properties for chemical reaction.The stiffness problem of chemical source was overcome by a relaxation iterative scheme.Transverse He-I2 injection test case was simulated with this method.The results were in good agreement with the result of AeroSoft's GASP.The supersonic COIL flows with He-I2 injection were also simulated.The distribution of the mass fraction and averaged small signal gain were calculated.The results showed that the averaged small signal gain increased with the increasing of O2(1△) yields or with the decreasing of the water vapor.The averaged small signal gain of a COIL with two spouts is bigger than that of a COIL with one spout.