高级检索

应用ABAQUS模拟激光焊接温度场

胡增荣, 周建忠, 郭华锋, 杜建钧

胡增荣, 周建忠, 郭华锋, 杜建钧. 应用ABAQUS模拟激光焊接温度场[J]. 激光技术, 2007, 31(3): 326-329.
引用本文: 胡增荣, 周建忠, 郭华锋, 杜建钧. 应用ABAQUS模拟激光焊接温度场[J]. 激光技术, 2007, 31(3): 326-329.
HU Zeng-rong, ZHOU Jian-zhong, GUO Hua-feng, DU Jian-jun. Simulation of temperature field of laser welding by ABAQUS[J]. LASER TECHNOLOGY, 2007, 31(3): 326-329.
Citation: HU Zeng-rong, ZHOU Jian-zhong, GUO Hua-feng, DU Jian-jun. Simulation of temperature field of laser welding by ABAQUS[J]. LASER TECHNOLOGY, 2007, 31(3): 326-329.

应用ABAQUS模拟激光焊接温度场

详细信息
    作者简介:

    胡增荣(1975- ),男,工程师,硕士研究生,主要从事先进制造技术的研究.

    通讯作者:

    周建忠,E-mail:zhoujz@ujs.edu.cn

  • 中图分类号: TG456.7

Simulation of temperature field of laser welding by ABAQUS

  • 摘要: 为了减小焊接变形,优化焊接工艺,需要准确预测激光焊接过程中温度场的分布情况,使用有限元模拟来预测温度场的分布是一种较好的方法.通过分析和总结激光焊接过程有限元模拟和理论分析的研究现状,以平板的焊接为例,建立了物理模型,并利用ABAQUS进行了激光焊接三维温度场的有限元模拟,讨论了模型的网格划分、边界条件及其模拟结果的后处理.模拟结果可以给出试件上任意一点任意时刻的温度情况,在激光功率为2000W、焊接速度为20mm/s的参数下模拟焊接2mm厚的A3钢板.结果表明,最高温度为3100℃左右,距焊接中心横向mm处A点的最高温度为150℃左右,与相同参数条件下的实验结果基本一致,说明有限元模拟可以准确预测焊接过程的温度场分布情况.
    Abstract: In order to reduce the deformation of welding parts,optimize welding technics,it is necessary to forecast the thermal field of welding process.It is proved the finite element analysis(FEA) is a good method to resolve the problem.After reviewing the present research of the finite element simulation and theoretical calculation of the laser welding,a physical model for plate welding was built and its temperature field was simulated based on ABAQUS,the modeling and meshing method,boundary conditions and the simulation result were discussed.The simulation results can tell us the temperature of any point of the workpiece at any time.For a 2mm thick A3 steel plate,the simulation results are the highest temperature is 3100℃,the temperature of the point A 4mm distant from the center point of the plate is 150℃ under the condition of 2000W laser power and 20mm/s welding speed,which are in good agreement with experimental results and prove that the FEA can be used to forecast the temperature field of welding process precisely.
  • [1]

    LI D Q,MEN Q G,TAO J.Modeling and numerical simulation of dy-amic displacement field of welding[J].Welding Joining,2002(2):13~15(in Chinese).

    [2]

    XUE Zh M,GU L,ZHANG Y H.Numerical simulation on temperature field in laser welding[J].Transactions of the China Welding Institution,2003,24(2):79~82(in Chinese).

    [3]

    ZHANG W H,ZHOU J,TASI H L.Numerical modeling of keyhole dynamics in laser welding[J].Proc SPIE,2003,4831:180~185.

    [4]

    XU J H,LUO Y M,ZHANG J Zh.Numerical simulation and parametric study for the heat transfer in keyhole high power density welding process[J].Journal of Southeast University,1999,29(11):62~67(in Chinese).

    [5]

    BRUGGEMANN G,MAHRLE A,BENZIGER T.Comparison of experimental determined and numerical simulated temperature fields for quality assurance at laser beam welding of steel and aluminous alloyings[J].Elsevier Science,2000,10(33):453~463.

    [6]

    LI J Ch,LI X Y,CHEN Q H.Fast calculation of thermal action of actual beam during the laser heat treatment[J].Chinese Journal of Materials Research,1998,12(3):262~266(in Chinese).

    [7]

    ZHANG Y K,ZHONG Zh J,YE Y X.Laser processing technics[M].Beijing:Chemical Industry Press,2004.73~74(in Chinese).

    [8]

    AMARA E H,MEBANI N,ALLALOU N et al.Numerical thermodynamic field modeling of a metallic substance during laser welding[A].Proceedings of the CAOL 2005 2nd International Conference on Advanced Optoelectronics and Lasers[C].Piscataway,NJ,USA:IEEE Place of Publication,2005.146~154.

    [9]

    LIU Sh H,WAN P T,HU L G.Study on numerical of the temperature field in laser welding of steel sheet[J].Electric Welding Machine,2001,31(8):16~19(in Chinese).

    [10]

    HUA Y Q,WANG Zh Sh,YANG J Ch.The research on the experiment of laser welding for A3 thick steel plate[J].Applied Laser,2005,25(4):230~232(in Chinese).

    [11]

    ZHOU Y Y,HU Ch K,CHEN P F.The laser welding of the double-linked gear in automobile gear-box[J].Laser Technology,2004,28(4):445~448(in Chinese).

  • 期刊类型引用(18)

    1. 王鑫洋,郑佳锋,黄轩,陈杨瑞雪,任涛. 一次典型高原低空风切变的成因和发展演变特征研究. 成都信息工程大学学报. 2025(01): 72-78 . 百度学术
    2. 孙启祯,叶家全. 我国西部地区机场风切变事件分布特性分析. 中国民航飞行学院学报. 2025(01): 10-14 . 百度学术
    3. 白寒冰,郑佳锋,杜星,车玉章. 基于1.55μm激光雷达的雷暴风切变结构研究. 应用激光. 2024(01): 86-96 . 百度学术
    4. 华志强,黄轩,赵启娜,田维东,孙永鑫. 西宁机场低空风切变特征统计及预警指标初探. 民航学报. 2024(03): 99-103+169 . 百度学术
    5. 牛向华,黄轩,朱文会,郑佳锋,唐顺仙,任涛,程振. 1.55μm激光雷达高原机场下击暴流探测应用研究. 激光技术. 2024(03): 318-326 . 本站查看
    6. 杨巧兰,蒋晓威,夏冬,黄照亮,李智标,邓丽洁. 地形和建筑触发珠海机场低空风切变数值模拟. 中山大学学报(自然科学版)(中英文). 2024(04): 47-60 . 百度学术
    7. 王楠,程海艳,尹才虎. 测风激光雷达对孤立雷暴引发湿下击暴流的结构分析. 激光技术. 2024(05): 643-650 . 本站查看
    8. 梁希豪,杨寅,冯亮,杜星,王清平. 基于测风激光雷达银川机场动量下传大风特征研究. 激光技术. 2023(03): 432-438 . 本站查看
    9. 徐足音,吴俊杰. 相干测风雷达的风切变识别及预警研究. 气象水文海洋仪器. 2023(02): 71-74 . 百度学术
    10. 吴俊杰,徐足音,王耀辉,杨传军,陈明. 相干测风激光雷达探测效能评估研究. 激光技术. 2023(05): 716-722 . 本站查看
    11. 王楠,尹才虎,刘晓明,高晋徽. 乌鲁木齐机场一次冷锋型低空风切变过程的LiDAR分析. 激光技术. 2023(04): 565-571 . 本站查看
    12. 张兆阳,孙宏,王奇,孙启祯,赵新斌,王一. 基于AHP和QAR数据的风切变风险管控. 项目管理技术. 2023(09): 115-120 . 百度学术
    13. 白寒冰,陈诚,林彤. 基于1.55μm激光雷达的晴空风切变结构研究. 激光与红外. 2023(10): 1497-1504 . 百度学术
    14. 吴俊杰,王耀辉,徐足音,任佳莉,张博义. 基于多普勒激光雷达的机场边界层高度研究. 激光技术. 2023(06): 778-785 . 本站查看
    15. 黄轩,郑佳锋,张杰,马晓玲,田维东,华志强. 西宁机场一次低空风切变的结构和特征研究. 激光技术. 2022(02): 206-212 . 本站查看
    16. 张千千,史纬恒,伍波,万家硕,成家豪,龚靖,赵青虎. 基于小波变换模极大值的LiDAR风切变预警算法. 激光技术. 2022(05): 610-617 . 本站查看
    17. 李林,张治国,杜传耀,韦涛,于丽萍,范雪波. 多普勒测风激光雷达与L波段探空对比分析. 大气与环境光学学报. 2022(05): 494-505 . 百度学术
    18. 王晋,田军委,刘雪松,张杰,张震. 湿微下击暴流对火炮外弹道精度影响分析. 弹箭与制导学报. 2022(06): 99-106 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 19
出版历程
  • 收稿日期:  2006-01-03
  • 修回日期:  2006-03-06
  • 发布日期:  2007-06-24

目录

    /

    返回文章
    返回