高级检索

基于硅的阵列波导光栅的理论分析

郭建强

郭建强. 基于硅的阵列波导光栅的理论分析[J]. 激光技术, 2007, 31(6): 620-623.
引用本文: 郭建强. 基于硅的阵列波导光栅的理论分析[J]. 激光技术, 2007, 31(6): 620-623.
GUO Jian-qiang. Theory analysis of array waveguide grid based on Si-slab[J]. LASER TECHNOLOGY, 2007, 31(6): 620-623.
Citation: GUO Jian-qiang. Theory analysis of array waveguide grid based on Si-slab[J]. LASER TECHNOLOGY, 2007, 31(6): 620-623.

基于硅的阵列波导光栅的理论分析

详细信息
    作者简介:

    郭建强(1957-),男,副教授,现从事光电子及光纤无源器件的研究及教学工作.E-mail:jianqguo@163.com

  • 中图分类号: O227

Theory analysis of array waveguide grid based on Si-slab

  • 摘要: 为了研究平面光波导光栅的理论和设计方法,采用波导模场的高斯近似和有效折射率法对波导进行计算,在不考虑平面波导有效折射率的色散效应和近轴近似条件下,分析了阵列波导光栅近似设计理论,经模拟设计与实际设计参数对比,得到了正确的方法,并简化了计算结果.结果表明,这种近似理论为阵列波导光栅的工程设计提供了一种简单实用的计算方法.
    Abstract: In order to simplify the complicated theory and calculation about arrayed wave-guide gratings(AWG),a simple analysis theory method is provided for the design of AWG,in which the gaussian approximation of the field distribution of the mode in an wave-guide,effective index method and Marcatili method were adopted to analyze the optical wave-guides,without regard to the dispersion of the slab wave-guides.Based on the above approximation,a simple and practical AWG calculation method is obtained.
  • [1]

    OU H Y,LEI H B,YANG Q Q et al.Optimization of a 1×8 arrayed-waveguide grating multi/demultiplexer[J].Chinese Journal of Semiconductors,2000,21(1):12~17(in Chinese).

    [2]

    JIA Zh A,QIAO X G,LI M et al.The influence of temperature on reflected wavelength shift of fiber Bragg gratings[J].Laser Technology,2004.28(3):309~311(in Chinese).

    [3]

    PASTOR D,MARTINEZ A,CAPMANY J et al.Modeling and design of arrayed waveguide gratings[J].Journal Of Lightwave Technology,2002,20(4):661~674.

    [4]

    SMIT M K.New focusing and dispersive planar component based on an optical phased array[J].Electron Lett,1988,24(7):385~386.

    [5]

    TAKAHASHI H,TOBA H.Transmission characteristics of arrayedwave-guide N×N wavelength multiplexer[J].Journal of Lightwave Technology,1995,13(3):7~14.

    [6]

    GUO W B,MA Ch Sh,CHEN W Y.Parameter design and loss analysis of a polymer arrayed-waveguide grating multi/demulIiplexer[J].Journal of Jilin University(Science Edition),2002,40(1):80~83.

    [7]

    LIN B,WANG K,GUO F Y et al.Beam parameters in diffracted field of fiber end face and the measurement[J].Acta Photonica Sinica,2004,33(3):294~298(in Chinese).

    [8]

    BERNASCONI P.Large N×N waveguide grating routers[J].IEEE Journal of Lightwave Technology,2000,18(7):17~23.

    [9]

    ISHII M,HIBINO Y,HANAWA F.Packaging and environmental stability of thermally controlled arrayed waveguide grating multiplexer module with thermoelectric device[J].IEEE Journal of Lightwave Technology,1998,16(2):28~33.

    [10]

    YAMADA H,TAKADA K.Crosstalk reduction in a 10GHz spacing arrayed waveguide grating by phase-error compensation[J].IEEE Journal of Lightwave Technology,1998,16(3):5~10.

    [11]

    TANG Y,JIA K,LI B et al.Silica based arrayed waveguide grating with flattened spectral response using multimode interference coupler[J].Chinese Physics Letters,2004,21(6):1064~1066.

    [12]

    KENNETH A.Arrayed wave-guide grating for wavelength routing[J].IEEE Communication Magazine,1998,36(1212):62~68.

    [13]

    WANG W,TANG Y,WANG Y.Etched diffraction grating based planar waveguide demultiplexer on silicon-on insulator[J].Opt Quant Electron,2004,35(4):254~257.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-10-25
  • 修回日期:  2007-03-19
  • 发布日期:  2007-12-24

目录

    /

    返回文章
    返回