Band gap and dispersion property of dual-core photonic crystal fibers
-
摘要: 为了研究双芯光子晶体光纤的带隙和色散特性,采用平面波展开法计算了双芯光子晶体光纤的带隙特性,当相对孔径d/A≥0.2时,归一化传播常数βA的增大,导致光子禁带宽度增加,利用空气导光的工作波长范围越大。并采用全矢量模型分析了双芯PCF的色散特性,得到了通过适当调整光纤的结构参量,可以获得灵活的色散特性的结果。当孔距A=2μm、相对孔径d/A=0.4时,在波长1.55μm附近,获得近480nm的超平坦色散区;随着相对孔径和孔距的增大,零色散点向短波长方向移动。这为制作高效传输光信号和高性能的保偏光纤提供了一个有效途径。Abstract: In order to study the photonic band gap and dispersion property of a dual-core photonic crystal fiber(PCF),the photonic band gap was calculated with the plane-wave expansion method.The calculation results show that when the relative aperture(d/Λ)is larger than 0.2,the normalized propagation constant(β/Λ)increases,so the prohibited band and the range of wavelength propagating in the air-core increase.Secondly,the dispersion property of a dual-core was analyzed with a full vector model.The results show that the dispersion property can be adjusted with different structure parameters of fibers.Results show about 480nm of super flat dispersion area near 1.55μm can be obtained with Λ=2μm,d/Λ=0.4; with the relative aperture and aperture distance increasing,zero dispersion point will move to shorter-wave.The results of this study provide an effective way to produce efficient transmission optical fibers and high-performance polarization fibers.
-
-
[1] KNIGHT J C,BIRKS T A,CREGAN R F,et al.Photonic crystals as optical fiber physics and applications[J].Optical Materials,1999,11(2/3):143-151.
[2] SINHA R K,VARSHNEY D.Dispersion properties of photonic crystal fiber:comparison by scalar and fully vectorial effective index methods[J].Optical and Quantum Electronics,2005,37(8):711-722.
[3] ALISTAIR D F,KENTARO F,TANYA M M,et al.Modeling the fabrication of hollow fibers:capillary drawing[J].Journal of Lightwave Technology,2001,19(12):1924-1931.
[4] ZHOU G Y,HOU Zh Y,LI Sh G,et al.Mathematical mode for fabrication of micro-structure fibers[J].Chinese Physics Letters,2005,22(5):1162-1165.
[5] FANG H,LOU Sh Q,REN G B,et al.Theoretical analysis on splice loss of photonic crystal fibers[J].Acta Optica Sinica,2006,26(6):806-811(in Chinese).
[6] WADSWORTH W J,KNIGHT J C,RUSSELL P S T J,et al.Soliton effects in photonic crystal fibers at 800nm[J].Electron Lett,2000,36(1):53-55.
[7] FERRANDO A,SILVESTRE E.Nearly zero ultraflattened dispersion in photonic crystal fibers[J].Opt Lett,2000,25(12):790-792.
[8] SNYDER W.Optical waveguide theory[M].New York:Chapman and Hall,1983:45-47.
[9] HUANG J J,LI G,CHEN M,et al.Simulation dispersion properties of photonic crystal fiber[J].Laser Technology,2006,30(4):432-425(in Chinese).
[10] JOANNOPOULOS J D,MEADE R D,WINN J N.Photonic crystal:molding the flow of light[M].New York:Princeton University Press,1995:19-21.
-
期刊类型引用(7)
1. 孙佳鑫,钱传鹏,徐作冬,张检民,叶锡生. 长波量子阱红外探测器激光辐照损伤脉宽效应数值模拟. 激光与光电子学进展. 2024(21): 290-297 . 百度学术
2. 胡蔚敏,王小军,田昌勇,杨晶,刘可,彭钦军. 脉宽对中红外激光带内损伤HgCdTe材料的影响. 强激光与粒子束. 2022(01): 130-137 . 百度学术
3. 王云萍,侯军燕,袁春,康文运,陈安民,张鲁薇. 飞秒激光对多光谱滤波片的损伤阈值研究. 激光技术. 2022(05): 697-701 . 本站查看
4. 李玉瑶,王菲,孙同同. 薄膜激光损伤阈值标定技术. 激光技术. 2021(06): 729-734 . 本站查看
5. 白凤凤,武桂芬. 光学薄膜激光损伤阈值的智能检测研究. 激光杂志. 2020(02): 171-175 . 百度学术
6. 周冰,贺宣,刘贺雄,李秉璇,张炎. 激光辐照非制冷微测辐射热计的理论研究. 激光技术. 2020(04): 411-417 . 本站查看
7. 任晓东,雷武虎,曾凌清,王勇. 基于相对运动的脉冲激光辐照探测器热效应数值分析. 光子学报. 2019(01): 105-111 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 5
- 被引次数: 9