-
采用激光脉冲波形探测器接收调Q输出的散射光,连接到示波器显示波形,测出1064nm基频光脉冲波形半峰全宽随注入电压变化情况如图 2所示。
激光输出脉冲宽度随抽运电压的增加而逐渐变窄,这是由于当外界激发作用增强时,腔内增益系数越大,工作物质的上能级反转粒子数的累积时间和衰减时间越短,脉冲建立及熄灭过程越短,导致脉宽向变窄趋势变化。随着外界激发作用不断加强,由于饱和效应,增益和损耗达趋于平衡,脉宽变窄趋势趋于平缓。
-
调Q状态下1064nm激光输出能量随抽运电压的变化情况如图 3所示。输出能量随注入电压增加而增大,当重复频率为10Hz,注入抽运电压为900V时,输出1064nm激光能量为310.5mJ。
基频光经过倍频晶体倍频和滤波片后,输出中心波长为532nm的绿光激光,532nm倍频光输出能量随基频光能量变化如图 4所示。倍频光能量随基频光能量增大呈线性关系增大,当基频光能量为300.2mJ时,倍频光能量为111.3mJ。
-
抽运光注入电压为900V时,使用Oceanoptics公司的MAYA2000PRO光纤光谱仪测得基频光和倍频光的光谱半峰全宽(full width at half maximum, FWHM)分别为2.1nm和1.26nm,倍频光光谱变窄。利用2阶非线性介质进行频率转换输出的倍频脉冲光强I′与基频脉冲光强I的平方成正比,Imax为基频光光谱峰值光强,Imax′为倍频光光谱峰值光强。基频光光谱FWHM为:
$ \Delta \lambda = {\lambda _2} - {\lambda _1} $
(1) $ {I_{{\lambda _2}}} = {I_{{\lambda _1}}} $
(2) $ {I_{{\lambda _1}}} = \frac{1}{2}{I_{\max }} $
(3) 基频光波长为λ1和λ2, 经倍频转换后, 分别为λ1/2和λ2/2。
当基频光光强为Iλ1或Iλ2时,倍频光光强为:
$ I' = \frac{1}{4}{{I'}_{\max }} $
(4) 式中,$I^{\prime}<\frac{I_{\max }^{\prime}}{2}$,此时倍频光光谱半峰全宽为:
$ \Delta \lambda^{\prime}=\frac{\lambda_{2}-\lambda_{1}}{2}<\Delta \lambda $
(5) 倍频光脉冲光谱λ1/2和λ2/2位置对应光强低于光谱半峰全宽光强位置,所以倍频光脉冲光谱半峰全宽相比基频光变窄。
-
固体染料增益介质由PM597染料分子掺杂至聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)基质制成,端面直径为25mm,侧面长度为25mm,用Lambda950紫外光分光光度计测出固体染料增益介质吸收光谱如图 5所示。染料增益介质在490nm~550nm范围内有较强吸收特性,532nm脉冲光可作为该染料激光器的抽运光。
-
用532nm脉冲激光抽运固体染料增益介质如图 6a所示,经谐振腔振荡输出中心波长为570nm黄光激光装置如图 6b所示。光谱图如图 7所示,染料激光输出波长向长波长方向移动。
被532nm脉冲光激发后染料分子的电子从激发态回到基态发光之前,会与周围的原子发生作用使其激发能的一部分以热等其它形式发生,非辐射的能量移动引起失活,因此辐射出的光子能量小于吸收的光子能量,导致输出波长红移。
抽运电压为800V时,改变固体染料激光腔M6与M7之间的距离,测得染料激光光谱半峰全宽变化情况如图 8所示。染料激光谱线半峰全宽相比532nm抽运光展宽,激光染料是含有芳香环或者芳香杂环以及共轭键体系的高分子有机化合物,存在大量的振动能级和转动能级结构,这些结构决定染料分子荧光光谱分布。染料分子掺杂到聚合物基质中,由于纳米孔的限制,使转动弛豫产生的非辐射复合减少,染料分子从激发态的不同振转能级跃迁至基态的不同振转能级上,导致光谱展宽。
增加M6与M7之间距离,染料激光谱线半峰全宽呈现变窄的趋势。在有源腔模式下, 线宽极限为:
$ \Delta {\nu _{\rm{s}}} = \frac{1}{{2{\rm{\mathtt{π}}}{\tau _{\rm{r}}}}} $
(6) 有源腔光子寿命为:
$ {\tau _{\rm{r}}} = \frac{L}{{{\delta _{\rm{s}}}c}} $
(7) 式中, L为谐振腔光学长度,δs为单程净损耗,τr为腔内光子寿命。根据(6)式、(7)式可以推导出有源谐振腔的线宽极限与谐振腔光学长度成反比,所以增加染料激光谐振腔长度,腔内光子寿命增加,导致光谱宽度变窄。
-
用532nm激光抽运固体染料,染料激光谐振腔的输出能量随532nm激光能量变化情况如图 9所示。532nm抽运光能量为102.2mJ,输出染料激光能量为62.2mJ,光光转换效率为61.3%。
在操作过程中,染料激光的抽运光强度不可以无限提高,当激发光超过一定限度时,增益介质光吸收趋于饱和,且不可逆转地破坏激发态分子,出现光漂白现象。
基于电光调Q 1064nm/532nm/570nm三波长固体激光器
1064nm/532nm/570nm three-wavelength solid-state lasers based on electro-optic Q-switches
-
摘要: 为了提升激光技术在色素性疾病治疗等生物医学应用效果, 研制了一种1064nm, 532nm, 570nm三波长激光器。采用电光调Q Nd:YAG激光器获得最窄脉宽为11ns的1064nm脉冲激光输出, 使用磷酸氧钛钾(KTP)非线性晶体对基频光腔外倍频获得532nm激光输出; 以固体染料块为激光增益介质, 倍频光为抽运光, 可获得中心波长为570nm的黄光输出, 光光转换效率为61.3%。结果表明, 通过改变氙灯注入电压, 可以调节1064nm激光脉冲输出特性; 增加固体染料激光器腔长, 可以调节染料激光输出光谱特性。该研究结果对激光器灵活应用具有重要意义。Abstract: In order to improve the effect of laser technology in the treatment of pigmentary diseases and other biomedical application, 1064nm/ 532nm/ 570nm three-wavelength lasers were developed. Electro-optic Q-switched Nd:YAG laser was used to obtain 1064nm pulse laser with narrow pulse width of 11ns. Output of 532nm laser was obtained by using KTP non-linear crystal for optical extra-cavity frequency doubling. With solid dye block as laser gain medium and frequency doubling light as pump light, yellow light output with a central wavelength of 570nm was obtained, and the light-to-light conversion efficiency was 61.3%. The results show that, by changing the injection voltage of xenon lamp, output characteristics of 1064nm laser pulse can be adjusted. By increasing the cavity length of the solid dye laser, output spectral characteristics of the dye laser can be adjusted. The research results are of great significance to the flexible application of lasers.
-
Key words:
- laser technique /
- solid-state dye laser /
- electro-optical Q-switched /
- pulse width
-
[1] LOU Sh Y, TIAN L, YANG Sh L, et al. The abservation of Q-switched 1064nm in treatment of coffe spot [J]. Chinese Journal of Laser Medicine & Surgery, 2016, 25(5): 269(in Chinese). [2] WANG X L. Assessment of 1064nm Nd:YAG laser in the treatment of 30 cases with moderate acne vulgaris [J]. China Journal of Leprosy and Skin Diseases, 2017, 33(12): 742-744(in Chinese). [3] LIU T Y. The application research of Q-switched 532nm laser with intense pulsed light therapy edage type freckles clinical [J]. China Medical Engineering, 2018, 26(10): 85-87 (in Chinese). [4] LI X L, TAN Y D, YANG Ch X, et al. Design of single-longitudinal-mode operation in a solid state yellow laser with twisted-mode-cavity [J]. Journal of Optics, 2014, 34(12):162-167(in Chinese). [5] WU W J, LI D, WANG G X, et al. Dynamic optical absorption cha-racteristic of human blood in visible-and near-infrared light with vari-able temperature [J]. Journal of Chemical Industry, 2013, 64(4):1157-1162(in Chinese). [6] QIAN Q H. Pulsed dye laser in clinical application and progress of dermatology[J]. Chinese Journal of Laser Medicine & Surgery, 2018, 27(2):92(in Chinese). [7] WANG Y Y, XU D G, LIU Ch M, et al. A high-power high-stability Q-switched green laser with intracavity frequency doubling using a diode-pumped composite ceramic Nd:YAG laser[J].Chinese Physics, 2012, B21(9) :315-320. [8] XU D G, YAO J Q, ZHANG B G, et al. 110W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control[J]. Optics Communications, 2005, 245(1/6):341-347. [9] ZHENG Q, SUN J. Laser research pf output wavelength contralled common aperture 0.532μm/1.064μm/3.9μm[J]. Laser Technology, 2017, 41(1):10-13(in Chinese). [10] CHU G Q, LIU X Y, WANG L J. Study of rhodamine 6G in modified poly(MPMMA) solid-state laser [J]. Laser & Infrared, 2001, 31(2): 82- 84(in Chinese). [11] BEZRODNYI V I, NEGRYIKO A M, KLISHEVICH G V, et al. Investigations of photophysical and generation properties of active elements based on dyes in aliphatic polyurethane matrix[J]. Journal of Polymer Research, 2013, 20(9):246. doi: 10.1007/s10965-013-0246-x [12] FAN R W, LIU W, LI X H, et al. Properties of improved polymer host solid-state dye laser [J]. Infrared and Laser Engineering, 2007, 36(s1): 50-53(in Chinese). [13] WANG G M, ZHANG Z H. Solid-state dye lasers based on PMMA co-doped with PM597 and PM650[J]. Laser Physics, 2011, 21(6):981-984. doi: 10.1134/S1054660X11110302 [14] PASANDIDEH K, RAHBARI M, BONABI R S. Narrow linewidth, tunable dye laser by multiple-prism beam expander[J]. Optical and Quantum Electronics, 2017, 49(9):306. doi: 10.1007/s11082-017-1136-y [15] LIU Q W, CHEN Y F, WANG J, et al. Design and implementation of NO2 differential absorptiom lidar source [J]. Laser Technology, 2018, 42(4):433-439(in Chinese). [16] WANG L, CHEN Y D, FAN R W, et al. Medium performance effect on the high output energy from a xenon lamp-pumped pyrromethene-567 solid-state dye laser[J]. Chinese Physics, 2012, B21(4):350-354. [17] JIANG Zh M, CHEN D R. Solid-state compound lumen and frequency 570nm CW yellow laser[J]. Optics and Precision Engineering, 2010, 18(4): 805-808(in Chinese). [18] WANG Zh Ch, DU Ch L, YUAN Sh C. Research progress of all-solid-state yellow lasers [J]. Laser & Optoelectronics Progress, 2008, 45(1):29-36(in Chinese). [19] DUARTE F J. Tunable organic dye lasers: Physics and technology of high-performance liquid and solid-state narrow-linewidth oscillators[J].Progress in Quantum Electronics, 2012, 36(1):29-50. doi: 10.1016/j.pquantelec.2012.03.002 [20] GEETHU MANI R G, BASHEER AHAMED M. Energy transfer studies for the liquid and solid state materials of Rhodamine B and Styryl 7 Dye[J]. Optik—International Journal for Light and Electron Optics, 2018, 154:566-575. doi: 10.1016/j.ijleo.2017.10.078