高级检索

一种纵向共振光声池谐振频率测量方法

杨志远, 卢荣军, 王生春

杨志远, 卢荣军, 王生春. 一种纵向共振光声池谐振频率测量方法[J]. 激光技术, 2019, 43(3): 387-391. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.018
引用本文: 杨志远, 卢荣军, 王生春. 一种纵向共振光声池谐振频率测量方法[J]. 激光技术, 2019, 43(3): 387-391. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.018
YANG Zhiyuan, LU Rongjun, WANG Shengchun. Measurement method of resonance frequency for longitudinal resonant photoacoustic cells[J]. LASER TECHNOLOGY, 2019, 43(3): 387-391. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.018
Citation: YANG Zhiyuan, LU Rongjun, WANG Shengchun. Measurement method of resonance frequency for longitudinal resonant photoacoustic cells[J]. LASER TECHNOLOGY, 2019, 43(3): 387-391. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.018

一种纵向共振光声池谐振频率测量方法

基金项目: 

军委装备部领域基金资助项目 6140720030216JW06001

详细信息
    作者简介:

    杨志远(1992-), 男, 硕士研究生, 现主要从事光声光谱检测的研究

    通讯作者:

    卢荣军, E-mail:rjlu@seu.edu.cn

  • 中图分类号: TN247;O433.1

Measurement method of resonance frequency for longitudinal resonant photoacoustic cells

  • 摘要: 为了快速准确测量共振光声池的谐振频率,采用基于共振声谱的光声池谐振频率测量法,搭建了光声光谱检测系统和共振声谱检测系统。对影响测量准确性的因素进行了实验分析。在不同气体体积分数的情况下,分别采用共振声谱法和光声信号强度标定法测量光声池的谐振频率。结果表明,共振声谱法测量的光声池共振频率与声信号激励电压、声源传播距离及角度无关;在5种不同体积分数的乙炔气体条件下,所测得的光声池谐振频率与通过光声信号强度法的结果最大偏差为1.1Hz,可认为两种方法测量结果具有一致性。该方法简单快速、可靠和准确,可用于确定光声池谐振频率。
    Abstract: Resonant frequency of a photoacoustic cell is one of its key parameters. In order to measure resonant frequency of a resonant photoacoustic cell quickly and accurately, a resonant frequency measurement method based on resonant acoustic spectroscopy was used to built a photoacoustic spectroscopy detection system and a resonant acoustic spectroscopy measurement system. The factors affecting the accuracy of measurement results were analyzed. Resonant frequency of the resonant photoacoustic cell was measured by the resonant acoustic spectroscopy method and photoacoustic signal intensity method respectively in the case of different gas concentrations. The experimental results indicate that the resonance frequency measured by the resonant acoustic spectroscopy method is independent of excitation voltage of the sound signal, distance and angle of sound source. Under the conditions of 5 different concentrations of acetylene(C2H2) gas, the maximum deviation of the resonant frequency between the resonance acoustic spectroscopy and photoacoustic signal intensity method is 1.1Hz. It is considered that the measured results of both the methods are consistent. The resonant acoustic spectroscopy method is simple, fast, reliable and accurate. It can be used to determine the resonant frequency of a photoacoustic cell.
  • Figure  1.   Relationship between incident light modulation frequency and photoacoustic signal (Lc=120mm)

    Figure  2.   Schematic structure of photoacoustic spectroscopy system

    Figure  3.   Schematic structure of resonance acoustic spectroscopy system

    Figure  4.   Relative location between photoacoustic cell and loudspeaker

    Figure  5.   Impact of acoustic source characteristics on measurement results

    a—resonant response at different excitation voltage d=10cm, θ=90°  b—resonant response at different location distance u=100mV, θ=90°  c—resonant response at different location angle u=100mV, d=10cm

    Figure  6.   Repeatability measurement results of acoustic resonance spectroscopy

    Figure  7.   Frequency response of photoacoustic cell based on acoustic resonance spectroscopy method

    Figure  8.   Resonant frequency measurement results based on photoacoustic signal amplitude

    a—2f signal of acetylene with modulation frequency at 700Hz  b—photoacoustic signal of acetylene at 5×10-5 vs. modulation frequency

    Table  1   Dimensions and parameters of photoacoustic cell

    buffer room r/mm buffer room l/mm resonant cavity R/mm resonant cavity L/mm resonant frequency f/Hz
    20 60 3 120 1443
    下载: 导出CSV

    Table  2   Measurement results of resonant frequency at different volume fractions of gas

    volume fraction of C2H2 f0/Hz f0′/Hz
    1×10-5 1397.8 1396.7
    2×10-5 1398.5 1398.9
    3×10-5 1400.2 1400.0
    4×10-5 1401.4 1401.0
    5×10-5 1402.2 1401.6
    下载: 导出CSV
  • [1]

    ZHA Sh L, LIU K, GAO X M, et al. Acetylene detection based on resonant high sensitive photoacoustic spectroscopy[J]. Spectroscopy and Spectral Anaysis, 2017, 37(9):2673-2678(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201709004

    [2]

    IVASCU I R, MATEI C E, PATACHIA M, et al. Multicomponent detection in photoacoustic spectroscopy applied to pollutants in the environmental air[J]. Romanian Reports in Physics, 2015, 67(4):1558-1564. http://cn.bing.com/academic/profile?id=10093a36a47b0663de1f2cdbda8d2d0d&encoded=0&v=paper_preview&mkt=zh-cn

    [3]

    YUN Y, CHEN W, WANG Y, et al. Photoacoustic detection of dissolved gases in transformer oil[J]. International Transactions on Electrical Energy Systems, 2008, 18(6):562-576. http://cn.bing.com/academic/profile?id=de2dad27984e8d35ca40454f6f72bc48&encoded=0&v=paper_preview&mkt=zh-cn

    [4]

    SHI M K, HU B, YING H, et al. Research of photoacoustic spectroscopy effect of ethylene concentration detected by laser[J]. Laser Technology, 2016, 40(3):426-431(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201603027

    [5]

    LI L, XIE W M, LI H. Applications of photoacoustic spectroscopy in the field of modern biomedicine[J]. Laser & Optoelectronics Progress, 2012, 49(10):100008(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201210008

    [6]

    LI H, GAO Y, LIU H B, et al. High-speed and 128-channel muti-spectral photoacoustic tomography system for small animal[J]. Laser Technology, 2017, 41(5):669-674(in Chinese).

    [7]

    JIANG M, FENG Q L, WEI Y F, et al. Recent advance in miniaturization of photoacoustic spectroscopy gas sensor[J]. Laser & Optoelectronics Progress, 2015, 52(2):20006(in Chinese).

    [8]

    CHEN Y, GAO G, GAI T. Detection technique of ethylene based on photoacoustic sepctrocopy[J]. Chinese Journal of Lasers, 2017, 44(5):0511001(in Chinese).

    [9]

    HANSON R K, SPEARRIN R M, GOLDENSTEIN C S. Spectroscopy and optical diagnostics for gases[M]. New York, USA:Springer International Publishing Switzerland, 2016:208-210.

    [10]

    MA Y F, YU G, ZHANG J B, et al. Research on real-time trace gas detection system based on QEPAS[J]. Spectroscopy and Spectral Analysis, 2015, 35(11):3003-3006(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201511005

    [11]

    ZHANG X X, LI X, LIU H, et al. The quantitative detection of SF6 characteristic decomposition component H2S based on cantilever enhanced photoacoustic sepctroscopy[J]. Transaction of China Electrotechnical Society, 2016, 31(15):187-196(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DGJS201615022.htm

    [12]

    LÜ Q X, LONG M D, LIU L W. Research on gas detector for hydrogen fluoride based on photoacoustic spectroscopy[J]. Environmental Science & Technology, 2016, 39(4):83-87(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201604017

    [13]

    VIJ D R. Handbook of applied solid state spectroscopy[M]. New York, USA:Springer Science Business Media, 2006:351-387.

    [14]

    CHEN J, YIN T Y, XU Z, et al. Detection of concrete damage using nonlinear impact resonance acoustic spectroscopy[J]. Industrial Construction, 2016, 46(1):95-99(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyjz201601019

    [15]

    FANG J Q, LI H J, LEI Y P, et al. Experiment study on structure state identification by acoustic resonance spectrum method[J].Technical Acoustic, 2008, 27(5):196-197(in Chinese).

    [16]

    YANG X. Research on measurement technology of acoustic velocity in Seawater using acoustic resonance spectroscopy[D]. Changsha: National University of Defense Technology, 2008: 39-40(in Chin-ese).

  • 期刊类型引用(3)

    1. 闫星宇,傅海威,雍振,王晓玲,张泽,赵子良. 光声光谱气体检测系统中光声池的仿真优化设计. 光通信技术. 2023(03): 86-90 . 百度学术
    2. 朱文江,余银辉,李辰溪,安冉,陈珂. 基于组合激光光源的双组分微量气体检测系统. 激光技术. 2022(05): 657-662 . 本站查看
    3. 张刚,吴许强,汪辉,葛强,左铖,余国锋,唐春安,俞本立. 共光声池腔芯轴型空气衬底光纤麦克风. 光学学报. 2021(02): 34-42 . 百度学术

    其他类型引用(2)

图(8)  /  表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-05-20
  • 修回日期:  2018-07-17
  • 发布日期:  2019-05-24

目录

    /

    返回文章
    返回