高级检索

重频50Hz风冷YAG固体激光器热设计及仿真分析

刘亚萍, 彭绪金, 赵刚, 陶刚, 高恒, 白杨, 唐伟, 罗杰平

刘亚萍, 彭绪金, 赵刚, 陶刚, 高恒, 白杨, 唐伟, 罗杰平. 重频50Hz风冷YAG固体激光器热设计及仿真分析[J]. 激光技术, 2021, 45(6): 735-739. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.010
引用本文: 刘亚萍, 彭绪金, 赵刚, 陶刚, 高恒, 白杨, 唐伟, 罗杰平. 重频50Hz风冷YAG固体激光器热设计及仿真分析[J]. 激光技术, 2021, 45(6): 735-739. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.010
LIU Yaping, PENG Xujin, ZHAO Gang, TAO Gang, GAO Heng, BAI Yang, TANG Wei, LUO Jieping. The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50Hz[J]. LASER TECHNOLOGY, 2021, 45(6): 735-739. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.010
Citation: LIU Yaping, PENG Xujin, ZHAO Gang, TAO Gang, GAO Heng, BAI Yang, TANG Wei, LUO Jieping. The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50Hz[J]. LASER TECHNOLOGY, 2021, 45(6): 735-739. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.010

重频50Hz风冷YAG固体激光器热设计及仿真分析

详细信息
    作者简介:

    刘亚萍(1981-), 女, 硕士, 高级工程师, 现从事激光器结构设计及分析。E-mail: 21242957@qq.com

  • 中图分类号: TN248.1

The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50Hz

  • 摘要: 二极管抽运固体激光器的散热问题是激光器能量输出稳定的关键问题。为了解决散热问题, 以激重频50Hz、激光输出能量不小于150mJ的风冷YAG固体激光器为例, 计算了激光器产生的热量, 构建了激光器二极管及散热部件3维模型, 利用FloEFD软件进行热分析, 优化了分析结果并进行了试验验证。结果表明, 循环工作3次后, 激光器输出155mJ、50Hz的激光能量, 激光束散为2.9mard, 散热器的温度约为85℃; 该设计稳定可靠, 可以解决该激光器的散热问题, 以满足激光器各项指标, 保证其正常工作。该研究为激光器更深层次的热设计提供了参考。
    Abstract: Thermal design is the key technology for a diode pump solid laser to keep high stability of the output energy. To solve the cooling problem of a solid laser, a 150mJ air cooled YAG laser with the repetition of 50Hz was systematically studied. The 3-D theoretical model of the diode-pumped laser and the cooling parts was constructed, and the generated heat of the laser was calculated. Further, the thermal management of the whole system was analyzed using the software of FloEFD, and the theoretical results were then discussed. Finally, the verified experiment was carried out. The results show that after three cycles, the laser output is 155mJ, 50Hz, the laser beam dispersion is 2.9mard, and the temperature of radiator is about 85℃, respectively. The thermal design in this study has high stability, with which the cooling problem of the laser can be perfectly solved to meet the final requirements of the system and guarantee the natural work of the laser. This study provides a reference for the further thermal design of laser.
  • Figure  1.   Thermal design structure of laser

    Figure  2.   Built-in model of the simplified case

    Figure  3.   Total model of the simplified case

    Figure  4.   Distribution of thermal consumption

    Figure  5.   TEC wave form chart

    Figure  6.   Air fan in the case

    Figure  7.   TEC temperature nephogram

    a—TEC temperature cloud at 40s b—TEC temperature cloud at 260s c—TEC temperature cloud at 480s

    Figure  8.   Relationship of the maximum temperature in the diode heat sink and the time

  • [1]

    OZMAT B. Interconnect technologies and the thermal performance of MCM[C]//Proceedings Intersociety Conference on Thermal Pheno-mena in Electronic Systems IEEE, 1992. New York, USA: IEEE, 1992: 226-245.

    [2]

    TIAN Ch Q, XU H B, CAO H Zh, et al. Cooling technology of high power solid state laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1686-1689(in Chinese). DOI: 10.3788/CJL20093607.1686

    [3]

    LV K P, TANG X J, LIU L, et al. Numerical analysis of the cooling structure of side-pumped solid laser[J]. Laser & Infrared, 2016, 46(11): 1345-1348(in Chinese).

    [4]

    CHEN D M, DU Y L, MA F Y, et al. The development of cooling technology of diode lasers[J]. Electronics & Packaging, 2007, 7(3): 28-29(in Chinese).

    [5]

    LIU X S, ZHAO W, XIONG L L, et al. Packaging of high power semiconductor lasers[M]. New York, USA: Springer of Congress Control Number, 2014: 54-57.

    [6]

    ZHONG G X. Semiconductor refrigeration device and its application[M]. Beijing : Science Press, 1986: 10-16(in Chinese).

    [7]

    XU D Sh. Semiconductor refrigeration and application technology[M]. Shanghai: Shanghai Jiaotong University Press, 1999: 16-21 (in Chinese).

    [8]

    CHE N K, LIN G T. Optimization of multiple module thermal electric cooler using artificial intel techniques[J]. International Journal of E-nergy Research, 2002, 26(10): 1269-1283.

    [9]

    EJLALI A, ARASH E, KAMEL H, et al. Application of high porosity metal foams as air-cooled heat exchanges to high heat load removal systems[J]. International Communications in Heat and Mass Transfer, 2009, 36(7): 674-679. DOI: 10.1016/j.icheatmasstransfer.2009.03.001

    [10]

    LIU Q. Study on heat dissipation method of high power semiconductor laser[J]. Communication Design and Application, 2020, 6(1): 9-10(in Chinese).

    [11]

    LIU R K, WANG C C, LI S S, et al. Review of thermal dissipation methods of high-power semiconductor lasers[J]. Electro-optic Technology Application, 2019, 34(6): 1-7.

    [12]

    TAO J H, HUANG J, LI Y. Semi-supervised ladder networks for speech emotion recognition [J]. International Journal of Automation and Computing, 2019, 16(4): 437-448. DOI: 10.1007/s11633-019-1175-x

    [13]

    LI B, CHEN W X. Introduction and case analysis of FloEFD flow and thermal simulation[M]. Beijing: Machinery Industry Press, 2015: 39-45(in Chinese).

    [14]

    LIU Y P, PENG X J, ZHAO G, et al. Structure design and analysis of cooling parts of compact lasers[J]. Laser Technology, 2017, 41(6): 886-890(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201236227841.html

    [15]

    QIN Y, LU J, NI X, et al. Axisymmetric numerical simulation of plastic damage in aluminum alloys induced by long pulsed laser[J]. Optic and Lasers in Engineering, 2010, 48(3): 361-367. DOI: 10.1016/j.optlaseng.2009.10.006

    [16]

    ZHOU B, HE X, LIU H X, et al. Research on laser irradiation uncooled micro bolometer based on finite element analysis[J]. Laser Technology, 2020, 44(4): 411-417(in Chinese).

    [17]

    SOLIDWORKS. SolidWorks simulation[M]. Beijing: Machinery Industry Press, 2012: 205-216(in Chinese).

  • 期刊类型引用(2)

    1. 何小波,焦石. 基于相位调制技术的可见光通信系统码间干扰识别研究. 激光杂志. 2021(01): 144-148 . 百度学术
    2. 韩中达,赵黎,王栋,杨博瑞. 兼顾照明的可见光流媒体信息传输装置研究. 激光杂志. 2020(07): 128-132 . 百度学术

    其他类型引用(0)

图(8)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-11-15
  • 修回日期:  2020-12-11
  • 发布日期:  2021-11-24

目录

    /

    返回文章
    返回