-
二极管激光器的阈值电流是指激光器正常工作时的最小电流。激光器的结构和共振腔品质决定了温度对阈值电流的影响,具体如下式[4]所示:
$ {I_{{\rm{th}}}}\left( T \right) = {I_{{\rm{ref}}}}{\rm{exp}}\left( {T - {T_{{\rm{ref}}}}/{\mathit{T}_0}} \right) $
(1) 式中,T0是特征温度,Iref是参考温度Tref下的阈值电流。从(1)式可看出,阈值电流会随着温度的升高而增大,为使激光器在较低的阈值电压下工作,必须提高热沉的散热效率,从而降低二极管激光器芯片的工作温度。
二极管激光器作为YAG固体激光器的抽运源,其热量主要是通过热沉散出。二极管激光器芯片产生废热依次通过焊接层、绝缘层、初级热沉、次级热沉最终通过对流产生的方式散出。二极管激光器芯片温度与传热热阻、冷却流体温度、输出功率的关系如下式[5]所示:
$ {T_{{\rm{laser}}}} = {T_{\rm{c}}} + {R_{{\rm{th}}}}\left( {{I_0}{U_0} - {P_{{\rm{out}}}}} \right) $
(2) 式中,Tlaser表示二极管激光器芯片的最高温度,Tc表示冷却流体的温度,Rth表示芯片与冷却流体件的传热热阻,I0和U0分别表示输入电流和输入电压,Pout表示激光器输出功率。由(2)式可知,要想降低二极管激光器芯片的温度要从两方面着手:(1)降低冷却流体的温度,增大温差以提高散热热流密度;(2)减小二极管激光器芯片与冷却流体间的传热热阻。本文中在假设这两者都是最优的情况下,次级热沉与外界散热部件进行热传导的设计与分析。
重频50Hz风冷YAG固体激光器热设计及仿真分析
The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50Hz
-
摘要: 二极管抽运固体激光器的散热问题是激光器能量输出稳定的关键问题。为了解决散热问题, 以激重频50Hz、激光输出能量不小于150mJ的风冷YAG固体激光器为例, 计算了激光器产生的热量, 构建了激光器二极管及散热部件3维模型, 利用FloEFD软件进行热分析, 优化了分析结果并进行了试验验证。结果表明, 循环工作3次后, 激光器输出155mJ、50Hz的激光能量, 激光束散为2.9mard, 散热器的温度约为85℃; 该设计稳定可靠, 可以解决该激光器的散热问题, 以满足激光器各项指标, 保证其正常工作。该研究为激光器更深层次的热设计提供了参考。Abstract: Thermal design is the key technology for a diode pump solid laser to keep high stability of the output energy. To solve the cooling problem of a solid laser, a 150mJ air cooled YAG laser with the repetition of 50Hz was systematically studied. The 3-D theoretical model of the diode-pumped laser and the cooling parts was constructed, and the generated heat of the laser was calculated. Further, the thermal management of the whole system was analyzed using the software of FloEFD, and the theoretical results were then discussed. Finally, the verified experiment was carried out. The results show that after three cycles, the laser output is 155mJ, 50Hz, the laser beam dispersion is 2.9mard, and the temperature of radiator is about 85℃, respectively. The thermal design in this study has high stability, with which the cooling problem of the laser can be perfectly solved to meet the final requirements of the system and guarantee the natural work of the laser. This study provides a reference for the further thermal design of laser.
-
Key words:
- lasers /
- repetition frequency /
- diode /
- thermal design /
- simulation
-
-
[1] OZMAT B. Interconnect technologies and the thermal performance of MCM[C]//Proceedings Intersociety Conference on Thermal Pheno-mena in Electronic Systems IEEE, 1992. New York, USA: IEEE, 1992: 226-245. [2] TIAN Ch Q, XU H B, CAO H Zh, et al. Cooling technology of high power solid state laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1686-1689(in Chinese). doi: 10.3788/CJL20093607.1686 [3] LV K P, TANG X J, LIU L, et al. Numerical analysis of the cooling structure of side-pumped solid laser[J]. Laser & Infrared, 2016, 46(11): 1345-1348(in Chinese). [4] CHEN D M, DU Y L, MA F Y, et al. The development of cooling technology of diode lasers[J]. Electronics & Packaging, 2007, 7(3): 28-29(in Chinese). [5] LIU X S, ZHAO W, XIONG L L, et al. Packaging of high power semiconductor lasers[M]. New York, USA: Springer of Congress Control Number, 2014: 54-57. [6] ZHONG G X. Semiconductor refrigeration device and its application[M]. Beijing : Science Press, 1986: 10-16(in Chinese). [7] XU D Sh. Semiconductor refrigeration and application technology[M]. Shanghai: Shanghai Jiaotong University Press, 1999: 16-21 (in Chinese). [8] CHE N K, LIN G T. Optimization of multiple module thermal electric cooler using artificial intel techniques[J]. International Journal of E-nergy Research, 2002, 26(10): 1269-1283. [9] EJLALI A, ARASH E, KAMEL H, et al. Application of high porosity metal foams as air-cooled heat exchanges to high heat load removal systems[J]. International Communications in Heat and Mass Transfer, 2009, 36(7): 674-679. doi: 10.1016/j.icheatmasstransfer.2009.03.001 [10] LIU Q. Study on heat dissipation method of high power semiconductor laser[J]. Communication Design and Application, 2020, 6(1): 9-10(in Chinese). [11] LIU R K, WANG C C, LI S S, et al. Review of thermal dissipation methods of high-power semiconductor lasers[J]. Electro-optic Technology Application, 2019, 34(6): 1-7. [12] TAO J H, HUANG J, LI Y. Semi-supervised ladder networks for speech emotion recognition [J]. International Journal of Automation and Computing, 2019, 16(4): 437-448. doi: 10.1007/s11633-019-1175-x [13] LI B, CHEN W X. Introduction and case analysis of FloEFD flow and thermal simulation[M]. Beijing: Machinery Industry Press, 2015: 39-45(in Chinese). [14] LIU Y P, PENG X J, ZHAO G, et al. Structure design and analysis of cooling parts of compact lasers[J]. Laser Technology, 2017, 41(6): 886-890(in Chinese). [15] QIN Y, LU J, NI X, et al. Axisymmetric numerical simulation of plastic damage in aluminum alloys induced by long pulsed laser[J]. Optic and Lasers in Engineering, 2010, 48(3): 361-367. doi: 10.1016/j.optlaseng.2009.10.006 [16] ZHOU B, HE X, LIU H X, et al. Research on laser irradiation uncooled micro bolometer based on finite element analysis[J]. Laser Technology, 2020, 44(4): 411-417(in Chinese). [17] SOLIDWORKS. SolidWorks simulation[M]. Beijing: Machinery Industry Press, 2012: 205-216(in Chinese).