高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重频50Hz风冷YAG固体激光器热设计及仿真分析

刘亚萍 彭绪金 赵刚 陶刚 高恒 白杨 唐伟 罗杰平

引用本文:
Citation:

重频50Hz风冷YAG固体激光器热设计及仿真分析

    作者简介: 刘亚萍(1981-), 女, 硕士, 高级工程师, 现从事激光器结构设计及分析。E-mail: 21242957@qq.com.
  • 中图分类号: TN248.1

The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50Hz

  • CLC number: TN248.1

  • 摘要: 二极管抽运固体激光器的散热问题是激光器能量输出稳定的关键问题。为了解决散热问题, 以激重频50Hz、激光输出能量不小于150mJ的风冷YAG固体激光器为例, 计算了激光器产生的热量, 构建了激光器二极管及散热部件3维模型, 利用FloEFD软件进行热分析, 优化了分析结果并进行了试验验证。结果表明, 循环工作3次后, 激光器输出155mJ、50Hz的激光能量, 激光束散为2.9mard, 散热器的温度约为85℃; 该设计稳定可靠, 可以解决该激光器的散热问题, 以满足激光器各项指标, 保证其正常工作。该研究为激光器更深层次的热设计提供了参考。
  • Figure 1.  Thermal design structure of laser

    Figure 2.  Built-in model of the simplified case

    Figure 3.  Total model of the simplified case

    Figure 4.  Distribution of thermal consumption

    Figure 5.  TEC wave form chart

    Figure 6.  Air fan in the case

    Figure 7.  TEC temperature nephogram

    a—TEC temperature cloud at 40s b—TEC temperature cloud at 260s c—TEC temperature cloud at 480s

    Figure 8.  Relationship of the maximum temperature in the diode heat sink and the time

  • [1]

    OZMAT B. Interconnect technologies and the thermal performance of MCM[C]//Proceedings Intersociety Conference on Thermal Pheno-mena in Electronic Systems IEEE, 1992. New York, USA: IEEE, 1992: 226-245.
    [2]

    TIAN Ch Q, XU H B, CAO H Zh, et al. Cooling technology of high power solid state laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1686-1689(in Chinese). doi: 10.3788/CJL20093607.1686
    [3]

    LV K P, TANG X J, LIU L, et al. Numerical analysis of the cooling structure of side-pumped solid laser[J]. Laser & Infrared, 2016, 46(11): 1345-1348(in Chinese).
    [4]

    CHEN D M, DU Y L, MA F Y, et al. The development of cooling technology of diode lasers[J]. Electronics & Packaging, 2007, 7(3): 28-29(in Chinese).
    [5]

    LIU X S, ZHAO W, XIONG L L, et al. Packaging of high power semiconductor lasers[M]. New York, USA: Springer of Congress Control Number, 2014: 54-57.
    [6]

    ZHONG G X. Semiconductor refrigeration device and its application[M]. Beijing : Science Press, 1986: 10-16(in Chinese).
    [7]

    XU D Sh. Semiconductor refrigeration and application technology[M]. Shanghai: Shanghai Jiaotong University Press, 1999: 16-21 (in Chinese).
    [8]

    CHE N K, LIN G T. Optimization of multiple module thermal electric cooler using artificial intel techniques[J]. International Journal of E-nergy Research, 2002, 26(10): 1269-1283.
    [9]

    EJLALI A, ARASH E, KAMEL H, et al. Application of high porosity metal foams as air-cooled heat exchanges to high heat load removal systems[J]. International Communications in Heat and Mass Transfer, 2009, 36(7): 674-679. doi: 10.1016/j.icheatmasstransfer.2009.03.001
    [10]

    LIU Q. Study on heat dissipation method of high power semiconductor laser[J]. Communication Design and Application, 2020, 6(1): 9-10(in Chinese).
    [11]

    LIU R K, WANG C C, LI S S, et al. Review of thermal dissipation methods of high-power semiconductor lasers[J]. Electro-optic Technology Application, 2019, 34(6): 1-7.
    [12]

    TAO J H, HUANG J, LI Y. Semi-supervised ladder networks for speech emotion recognition [J]. International Journal of Automation and Computing, 2019, 16(4): 437-448. doi: 10.1007/s11633-019-1175-x
    [13]

    LI B, CHEN W X. Introduction and case analysis of FloEFD flow and thermal simulation[M]. Beijing: Machinery Industry Press, 2015: 39-45(in Chinese).
    [14]

    LIU Y P, PENG X J, ZHAO G, et al. Structure design and analysis of cooling parts of compact lasers[J]. Laser Technology, 2017, 41(6): 886-890(in Chinese). 
    [15]

    QIN Y, LU J, NI X, et al. Axisymmetric numerical simulation of plastic damage in aluminum alloys induced by long pulsed laser[J]. Optic and Lasers in Engineering, 2010, 48(3): 361-367. doi: 10.1016/j.optlaseng.2009.10.006
    [16]

    ZHOU B, HE X, LIU H X, et al. Research on laser irradiation uncooled micro bolometer based on finite element analysis[J]. Laser Technology, 2020, 44(4): 411-417(in Chinese).
    [17]

    SOLIDWORKS. SolidWorks simulation[M]. Beijing: Machinery Industry Press, 2012: 205-216(in Chinese).
  • [1] 乔迁赵虎谢兰强 . 全固态风冷式激光器散热设计及优化. 激光技术, 2024, 48(2): 235-239. doi: 10.7510/jgjs.issn.1001-3806.2024.02.014
    [2] 金冬月洪福临张万荣张洪源王毅华王焕哲王楷尧关宝璐 . 垂直腔面发射激光器阵列的热设计研究进展. 激光技术, 2024, 48(6): 777-789. doi: 10.7510/jgjs.issn.1001-3806.2024.06.002
    [3] 王顺程高峰李强杨建昌闫宗群 . 激光发射天线仿真平台设计. 激光技术, 2019, 43(1): 131-136. doi: 10.7510/jgjs.issn.1001-3806.2019.01.026
    [4] 赵晓军肖永亮王从刚杜伟敏杨泽后伍波周鼎富陈建国 . MOPA方式高峰值功率脉冲光纤放大器模拟. 激光技术, 2009, 33(2): 172-175,179.
    [5] 陈煌飞陈勇李怡勇王志 . 1.06μm激光的大气传输仿真研究. 激光技术, 2014, 38(2): 266-269. doi: 10.7510/jgjs.issn.1001-3806.2014.02.025
    [6] 陈永庆张陈涛张建寰 . 激光化学气相沉积石墨烯的基底温度场仿真. 激光技术, 2015, 39(5): 648-653. doi: 10.7510/jgjs.issn.1001-3806.2015.05.013
    [7] 王可宁刘允雷陈海滨郭子龙 . 移频延时自外差法的DFB激光器线宽测量. 激光技术, 2018, 42(5): 633-637. doi: 10.7510/jgjs.issn.1001-3806.2018.05.010
    [8] 赵刚李晶彭绪金高恒杨闯陶刚刘亚萍廖志烨 . 无热电恒温的小型重频二极管抽运板条激光器. 激光技术, 2016, 40(5): 625-628. doi: 10.7510/jgjs.issn.1001-3806.2016.05.002
    [9] 李晴王又青黄鸿雁 . 轴快流CO2激光器放电管结构的研究和设计. 激光技术, 2010, 34(4): 525-528. doi: 10.3969/j.issn.1001-3806.2010.04.025
    [10] 屈直张伯虎 . 一种改进的小波阈值算法在激光侦听中的应用. 激光技术, 2014, 38(2): 218-224. doi: 10.7510/jgjs.issn.1001-3806.2014.02.016
    [11] 张俊张为国 . Micro-LED蓝宝石衬底AlN上GaN激光剥离研究. 激光技术, 2023, 47(1): 25-31. doi: 10.7510/jgjs.issn.1001-3806.2023.01.004
    [12] 高恒贾凯杨闯刘亚萍赵刚高军 . 激光二极管侧面抽运免温控激光器的研究. 激光技术, 2019, 43(1): 1-5. doi: 10.7510/jgjs.issn.1001-3806.2019.01.001
    [13] 王军阵朱忠于新峰周军 . 双体光栅外腔二极管激光器光谱特性研究. 激光技术, 2018, 42(1): 108-112. doi: 10.7510/jgjs.issn.1001-3806.2018.01.021
    [14] 巩马理张志攀高松张海涛 . 二极管角部抽运Nd:YAG基模激光器. 激光技术, 2009, 33(1): 1-4.
    [15] 毛小洁秘国江杨文是庞庆生邹越 . 二极管端面抽运千赫兹激光器. 激光技术, 2012, 36(5): 639-641. doi: 10.3969/j.issn.1001-3806.2012.05.016
    [16] 高清松童立新蒋建峰唐淳 . 高功率二极管激光器面阵四通抽运耦合系统. 激光技术, 2005, 29(2): 135-137.
    [17] 李莉莎侯瑶陈秀艳李修陈浩伟任兆玉白晋涛 . 二极管侧面抽运双声光调Q 589nm黄光激光器. 激光技术, 2009, 33(3): 273-275,290.
    [18] 杨仁付朱孝立陈军宁 . Ronchi光栅误差的数值仿真. 激光技术, 2012, 36(1): 37-41. doi: 10.3969/j.issn.1001-3806.2012.01.011
    [19] 耿伟彪胡姝玲邵洪峰 . 基于FPGA数字相位调制光外差激光稳频系统设计. 激光技术, 2014, 38(5): 665-668. doi: 10.7510/jgjs.issn.1001-3806.2014.05.019
    [20] 张延超孙兰君付石友刘立宝田兆硕 . 高重频可调小型高功率半导体激光电源研究. 激光技术, 2012, 36(6): 731-734. doi: 10.3969/j.issn.1001-3806.2012.06.005
  • 加载中
图(8)
计量
  • 文章访问数:  6382
  • HTML全文浏览量:  4534
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 录用日期:  2020-12-12
  • 刊出日期:  2021-11-25

重频50Hz风冷YAG固体激光器热设计及仿真分析

    作者简介: 刘亚萍(1981-), 女, 硕士, 高级工程师, 现从事激光器结构设计及分析。E-mail: 21242957@qq.com
  • 西南技术物理研究所, 成都 610041

摘要: 二极管抽运固体激光器的散热问题是激光器能量输出稳定的关键问题。为了解决散热问题, 以激重频50Hz、激光输出能量不小于150mJ的风冷YAG固体激光器为例, 计算了激光器产生的热量, 构建了激光器二极管及散热部件3维模型, 利用FloEFD软件进行热分析, 优化了分析结果并进行了试验验证。结果表明, 循环工作3次后, 激光器输出155mJ、50Hz的激光能量, 激光束散为2.9mard, 散热器的温度约为85℃; 该设计稳定可靠, 可以解决该激光器的散热问题, 以满足激光器各项指标, 保证其正常工作。该研究为激光器更深层次的热设计提供了参考。

English Abstract

    • 目前,在远距离、高重频激光测距机中,二极管抽运的激光器已逐步取代灯抽运激光器。但随着激光器功率不断提升,热耗散功率随之增加,若不能及时消除耗散功率转化的热量,激光器温度剧增,阈值电流增高,其发射的激光波长发生严重温漂[1],1℃漂移约0.3nm, 而吸收巴条激光的Nd∶YAG的吸收宽度只有3nm左右。为了保证激光能量稳定,对巴条进行了特定温度范围内的免温控设计,可在环境温度20℃~60℃之间保证吸收宽度的需求。但是激光测距机在重频50Hz工作时,如果没有对其进行相应的热设计,该产品很难满足环境温度-40℃~65℃的要求。本文中重点对50Hz的激光测距机进行了详细的热设计和仿真分析[2-3]

    • 二极管激光器的阈值电流是指激光器正常工作时的最小电流。激光器的结构和共振腔品质决定了温度对阈值电流的影响,具体如下式[4]所示:

      $ {I_{{\rm{th}}}}\left( T \right) = {I_{{\rm{ref}}}}{\rm{exp}}\left( {T - {T_{{\rm{ref}}}}/{\mathit{T}_0}} \right) $

      (1)

      式中,T0是特征温度,Iref是参考温度Tref下的阈值电流。从(1)式可看出,阈值电流会随着温度的升高而增大,为使激光器在较低的阈值电压下工作,必须提高热沉的散热效率,从而降低二极管激光器芯片的工作温度。

      二极管激光器作为YAG固体激光器的抽运源,其热量主要是通过热沉散出。二极管激光器芯片产生废热依次通过焊接层、绝缘层、初级热沉、次级热沉最终通过对流产生的方式散出。二极管激光器芯片温度与传热热阻、冷却流体温度、输出功率的关系如下式[5]所示:

      $ {T_{{\rm{laser}}}} = {T_{\rm{c}}} + {R_{{\rm{th}}}}\left( {{I_0}{U_0} - {P_{{\rm{out}}}}} \right) $

      (2)

      式中,Tlaser表示二极管激光器芯片的最高温度,Tc表示冷却流体的温度,Rth表示芯片与冷却流体件的传热热阻,I0U0分别表示输入电流和输入电压,Pout表示激光器输出功率。由(2)式可知,要想降低二极管激光器芯片的温度要从两方面着手:(1)降低冷却流体的温度,增大温差以提高散热热流密度;(2)减小二极管激光器芯片与冷却流体间的传热热阻。本文中在假设这两者都是最优的情况下,次级热沉与外界散热部件进行热传导的设计与分析。

    • 该二极管激光器的设计要求如下:波长为1.064μm;激光器输出能量大于150mJ;重频为50Hz;脉宽小于10ns;束散为2.5mard~3mard;工作温度为-30℃~+65℃。光束质量:光斑能量分布均匀;工作方式:重频50次/s时,一次连续工作时间不小于40s,间隔时间3min为一个工作循环,连续工作3个循环后休息30min。

      该二极管抽运Nd∶YAG固体激光器的最高使用环境温度为65℃。YAG固体激光器使用的抽运源——二极管激光器(以下简称抽运源)工作温度为20℃~60℃。因此, 在65℃工作时,热管理条件最为严峻,产品的热设计的重点是产品如何满足环境温度65℃工作时保证巴条工作温度不大于60℃。

      YAG固体激光器的热设计分为激光晶体的热设计和抽运源热设计[6-8]。激光晶体采用的是圆柱形YAG晶体棒,其热设计为传导冷却,YAG晶体棒侧面的一半为抽运面,另外一半铟焊在与之热胀系数一致的金属热沉上,其材料为钨铜合金座WCu20(GB/T8320-2003),该金属热沉再与激光器基体紧密接触,实现热传导冷却,其结构如图 1所示。

      Figure 1.  Thermal design structure of laser

      激光器抽运源热设计[9],采用半导体热电致冷器(thermo electric cooler, TEC)辅助温控的宽温度范围(20℃~60℃)巴条并结合轴流风机强迫风冷,TEC提高致冷效率的前提是最大限度地及时带走TEC热端的热量。抽运源金属热沉与TEC的冷端紧密接触并与激光器外壳进行绝热设计,TEC热端与外部散热部件——带散热翅的均温板紧密贴合,该均温板内部真空封装均热介质,以保证更高效的散热。风机对均温板的散热翅进行强迫风冷。在环境温度低于20℃时,即-40℃~20℃时,启动TEC加热巴条热沉到20℃之上时,TEC停止工作,当环境温度超过60℃时,启动TEC致冷,使得巴条热沉温度不超过60℃。一般情况下,在激光器工作的大部分时间是20℃~60℃,所以TEC不用工作,发热和功耗都维持在一个较低的水平。

    • 该激光器采用两组抽运模块,每组抽运模块以25Hz交替工作,合成50Hz激光输出。每组抽运模块采用48×2个150W的二极管巴条交错对称抽运,每个巴条最大工作在100A、脉宽200μs下,则总的抽运脉冲峰值电功率和电脉冲能量分别为:2×96V×100A×200μs =3.84J,抽运功率为3.84×25=96W,以二极管40%的光电转换效率,巴条产生的热功率为96×60%=57.6W。

      考虑到小型化、轻量化的设计要求,采用半导体制冷散热方式进行散热,其最主要的特点[10]是体积小、可靠性强、操作简单[11],通过调整TEC内部参量可以提高TEC的控冷效果[12],并且最佳的传热面积比值能让TEC特性系数达到最大值。在TEC冷热面不大于30℃的前提下,TEC效率为40%,此时TEC的功率为57.6/40%=144W,则TEC热端需要散走的热量为144W+57.6W=200W。

      由于本方案中采用2组抽运模块,因此TEC热端散走的热量为200W×2=400W。

      由风机强迫冷却散热翅盖板带走如此多的热量压力很大,尤其在65℃高温的小体积密闭舱里,更是艰巨,所以需要进行整机的详细热设计、仿真。

    • 本次热仿真采用FloEFD软件[13]。FloEFD是无缝集成于主流3维CAD软件中的高度工程化的通用流体传热分析软件,它基于当今主流计算流体力学(computational fluid dynamics, CFD)软件都广泛采用的有限体积法(finite volume method,FVM)开发,其完全支持本次3维设计软件——SolidWorks软件的计算机辅助设计(computer aided design,CAD)模型。FloEFD的分析步骤包括测距机3维模型建立、自动网格划分、边界条件施加、求解和后处理等完全在CAD软件界面下完成,整个过程快速高效。值得注意的是,已经通过大量数值验证该方法是正确的[14-16]

    • 采用SolidWorks软件进行3维建模,该机箱的模型比较复杂,在保证分析精度的前提下,需要对测距机的结构进行简化[17]。简化过程中,机箱的细节特征,如螺纹孔、工艺孔、圆角、倒角可去掉;装配体中的小零件,如盖板螺钉、加强筋等也可去掉。对于通风滤网,在保证通风面积不变的情况下,可以用包含一定风阻的结构代替。简化后的结构如图 2图 3所示。

      Figure 2.  Built-in model of the simplified case

      Figure 3.  Total model of the simplified case

    • 划分网格数量的多少会直接影响计算精度和准确性。虽然网格数目越多计算精度越准确,但与此同时计算规模也会随之增加,计算机的运算负担也就越重,运算所需的时间也就越长。因此, 在确定网格数量时需要平衡两方面,既要满足设计精度要求,又要避免计算机运算负担过重。

    • 环境温度65℃;单个TEC外形尺寸:120mm×30mm×3.45mm;均温板外形:210mm×100mm×58mm,散热翅宽1.5mm,翅间距为1.5mm,翅高50mm,散热面积约为377580mm2;均温板导热系数为2500W/(m · K)。

      机箱模块功耗如图 4所示。热耗等效为面热源,两组TEC热功耗共450W(考虑50W裕量),工作40s,停止3min,共3个循环。功率加载波形如图 5所示。

      Figure 4.  Distribution of thermal consumption

      Figure 5.  TEC wave form chart

    • 机箱内两个风扇分布位置如图 6所示。风机采用的是轴流式风机,其电压为28V,外形大小约40mm×40mm×28mm,单个风扇风量设置为恒定值50m3/h,共两个风机。

      Figure 6.  Air fan in the case

    • 将以上的条件加载到模型上,仿真TEC与散热均温板贴合面的温度。该测距机的工作方式为:重频50次/s时,一次连续工作时间不小于40s,间隔时间3min为一个工作循环,连续工作3个循环后休息30min。可知,激光器热沉在40s,260s,480s时,温度达到峰值,这3个时间的TEC与散热均温板的温度云图如图 7所示。由图中可看出,温度最高的位置是两个TEC的位置,然后围绕最高温度位置,温度逐渐降低,温度曲线如图 8所示。3个时间的温度分别为82.3℃,83.6℃和83.7℃。

      Figure 7.  TEC temperature nephogram

      Figure 8.  Relationship of the maximum temperature in the diode heat sink and the time

      综上分析,TEC模块在3个工作循环后,巴条最高温度为83.7℃,小于85℃的设计要求,该热设计可满足激光测距机的要求。

    • 根据设计图纸,加工出各个零件。在散热均温板与TEC贴合的位置涂抹导热硅脂,以保证两者能紧密贴合,更好地导热。二极管激光器在高温65℃工作时,根据技术要求工作40s,停止3min,一共进行3个循环,激光器能正常工作,在重频50Hz下,输出能量为155mJ,脉宽为10ns,激光束散为2.6mard,经过24h的高低温工作和48h的高低温存储后,光斑大小依然均匀,光束质量仍然稳定可靠。测试散热器的温度约为85℃,证明该热设计满足激光器散热需求,满足测距机性能和技术要求。

参考文献 (17)

目录

    /

    返回文章
    返回