-
Ti-6Al-4V在医用领域的SLM成形工艺问题与工业应用领域类似,都是为了解决成形过程中出现的孔隙、变形、尺寸精度等问题以确保成形质量,且部分性能具有共性要求。因此,虽然应用于医用的Ti-6Al-4V在粉末特性上存在微量元素的细微差异和对氧含量的控制要求不同,但Ti-6Al-4V成形工艺问题和改善方法具有普遍性和适用性,相关力学性能和工艺方法仍具有参考性。为了方便全面总结分析Ti-6Al-4V在医疗器械生产上的成形工艺问题和力学性能,综合了部分工业应用Ti-6Al-4V相关的研究。
-
SLM成形下孔隙的存在往往导致零件质量下降。除材料本身和加工环境因素[2]外,其主要原因在于成形过程中熔道搭接不良、熔池不稳定行为。而影响上述行为的工艺参量有扫描功率、扫描速度、扫描间距、层厚、扫描策略等。表 1中例举了部分学者对上述主要影响参量的研究结果。随着研究的不断深入完善,现阶段Ti-6Al-4V成形密度基本能接近理论密度。
表 1 工艺参量对Ti-6Al-4V成形密度的影响研究
作者/时间 主要考察参量 主要结果/结论 THIJS[3] /2010 扫描策略 对比单向、z形及z形具有一定旋转角的3种不同扫描策略, z形旋转扫描具有更高的致密度,可达99.9% BARTOLOMEU[4]/2016 功率、间距、速度 利用数理统计方法分析了各参量之间存在相互作用,相同能量密度下,速度比间距对密度的影响更大 SHI[5]/ 2016
SHI[6]/2018层厚 高功率(400W)、高层厚(200μm)、搭配大光斑直径, 分别实现了粗粉(53μm~106μm)99.95%和99.99%相对密度的成形 HAN[7]/2017 速度、间距 搭配不同参量,能量密度在120J/mm3~190J/mm3之间为Ti-6Al-4V最佳工艺窗口范围,相对密度大于99.95% 此外,研究表明, 热等静压[8]、锻造[9]等后处理工艺能进一步提高致密度,因此,对于辅助类器械,还可以通过结合实际,按照相关后处理工艺实现近乎完全致密生产。
上述研究表明, 合理搭配工艺参量和结合一定的后处理手段不仅能实现Ti-6Al-4V的高密度生产,且通过调节层厚和光斑等参量能适当地提高生产效率。
-
影响Ti-6Al-4V激光熔化快速成形质量的另一个关键问题是热应力。Ti-6Al-4V在激光瞬间高能作用下,经历了快速熔化凝固的过程,局部极易产生变形和裂纹,特别是对于复杂的植入体结构,局部的薄弱结构经常由应力导致裂纹或变形使成形失败。一直以来,相关人员也围绕应力优化问题展开了一段漫长的研究,图 1中总结和例举了常见降低残余应力的方法及其文献出处[10-16]。
然而,尽管上述工艺优化方法在一定程度上都能减少应力变形,但由于SLM其瞬时、高温作用材料的固有加工特点,其热应力无法避免。特别是对于大型医疗器械件的生产加工,应力问题将更为复杂。故现对于大型外科植入物件的成形仍存在应力不可控问题。
-
医疗器械对整体尺寸精度和表面质量要求较高,需满足植入、操作的匹配性。特别是植入体,具有空间结构复杂性,留下的机加工空间太低。因此, Ti-6Al-4V在SLM成形过程中的制造精度控制也十分重要。
一方面,为了研究和控制SLM成形Ti-6Al-4V的尺寸偏差,SUN等人[17]发现成形尺寸与能量密度有关且存在各向异性,x, y方向高能容易增加平面液体流动范围增大尺寸,而在z方向粉末熔化收缩则导致尺寸变小。LIU等人[18]利用显微计算机断层扫描对成形的单元支架测量发现构建方向出现明显的收缩,支架厚度在高度方向小于水平方向,形成局部薄弱点。目前尺寸的控制工艺主要还是通过控制能量输入和设备软件校正来实现。对于牙科小型件而言,仅通过参量优化即可达到比较高的精度,如WANG等人[19]优化工艺参量后成形牙冠、牙钉螺纹尺寸偏差分别在1.12%~2.49%, 3.14%。而对于大型件则需要设备软件进行尺寸校正,但对于空间复杂度较高植入体结构,软件修正会由于缺乏精确修正模型和多孔结构难于测量问题[20]表现出局部尺寸补偿局限性。
另一方面,据报道, Ti-6Al-4V经SLM成形后表面粗糙度Ra通常存在很大的波动范围(10μm~30μm[21-23]),这主要跟成形表面形状特征有关。虽然CHEN等人[24]研究表明, 粗糙度随着成形面倾斜角的增加而增加, 对细胞粘附和增殖影响没有显示出统计学差异,但实际上粗糙度对抗疲劳、耐腐蚀等性能影响却非常大。为了研究和控制好粗糙度,WANG等人[25]研究了不同功率和扫描速度工艺参量对Ti-6Al-4V成形粗糙度的影响,发现功率、速率分别在150W~250W, 850mm/s~1450mm/s时,能保证尺寸精度, 同时Ra接近6.3μm。此外,研究发现, 螺旋线扫描[26]和重熔扫描策略也能有效改善表面粗糙度。其中,重熔扫描包括增加轮廓扫描[27-28]和表面重熔扫描[29]两种方法。前者可以处理由于边缘堆高引起的表面粗糙问题。但对后者的研究表明,随着表面重熔次数增加,可能会带来表面氧化层化学成分变化和偏析问题[30]。因此,针对表面质量要求更高的辅助器械工具成形,上述方法存在一定局限性,后续抛光是必要的。
-
研究表明,与传统加工方式不同,Ti-6Al-4V经SLM成形后,其快速再结晶特点得到的是亚稳定细小α′相组织。虽然这种组织细晶强化提高了强度,但同时也降低了塑性, 延伸率仅为3%~6%[31-34], 远低于医疗器械GB/T 13810-2007规定的10%。另外由于SLM是一个逐层叠加成形的过程,柱状晶的存在也表现出力学性能各向异性[35]问题。针对上述问题,大量研究旨在通过原位马氏体分解、后热处理手段调控微观组织实现塑性重塑和力学各向异性的消除,图 2中举例了部分研究学者相关工作。
具体而言,XU等人[36]通过调节能量密度和光斑离焦值后,得到了如图 3所示的不同层状α+β组织结构,优化后延伸率可达11.4%,屈服强度1100MPa。ALI等人[37]在570℃基板预热条件下,屈服强度和伸长率分别相比未预热分解提高3.2%和66.2%。QIU等人[38]通过最终拉伸试验对比,其拉伸特性能与热机械加工方式相当,如图 4所示。LI等人[39]的对比结果显示,800℃保温2h炉冷为最佳热处理工艺,成形样抗拉强度达1065MPa,延伸率达20.5%。
图 3 离焦量与能量密度引起的微观组织的变化[36]
图 4 SLM成形Ti-6Al-4V原始态和热等静压处理后的拉伸应力-应变曲线对比[38]
以上研究表明, Ti-6Al-4V经SLM成形后塑性变差的问题,通过优化加工工艺参量结合热处理手段可以获得较高的基本力学性能,其塑性优于现有传统加工路线国标规定的医用器械标准值。但应当注意,实际上通过SLM成形生产的Ti-6Al-4V专用粉末医疗器械,其塑性可能会因为专用粉末微量元素、成分和特性不同而表现出一定差异。
-
在临床上,医疗植入类器械的选型一个重要的原则是要求尽可能符合人体骨骼力学特性(皮质骨强度为100MPa~150MPa[40],弹性模量为4GPa~30GPa[41]),以提高植入稳定性和减少应力屏蔽作用。而SLM技术结合多孔结构设计的契机完美地为解决这一问题提供了方法,已有研究表明,多孔组织具有适合细胞组织所需的生长结构基础[42-43]能促进骨再生和整合[44]。
因此,现大量工作主要围绕着多孔结构的设计制造。现有SLM制造多孔主要通过:造孔剂原位气泡生成[45]、间距构造[46]以及CAD辅助设计一次成形来实现。前两种方法构造虽简单,但分别由于不易控制和难于实现复杂和梯度孔制造而受到限制,故CAD辅助设计成为了主要方法。近些年,CAD辅助设计制造单元点阵结构的研究报道较多。表 2为ZHANG等人[47]综合了大量研究人员的研究结果,包括不同类型和尺寸单元结构的弹性模量等力学性能的参考值。
表 2 常见不同单元结构类型尺寸设计的相关制造性能参考值[47]
单元类型 孔径/μm 结构大小/μm 多孔度/% 杨氏模量/
GPa屈服强度/
MPa参考文献 设计值 测量值 设计值 测量值 设计值 测量值 立方体 348~720 451~823 1452~1080 1413~1020 65~90 63~87 1.76~4.62 29~110 [48-49] 550, 800 — 300, 400 — 70.3~70.7 70.2~68.7 5.1~6.7 155~164 [50] 1000~2040 765~1020 450, 800 466~941 60.91~75.83 49.75~59.32 0.57~2.92 7.28~163.02 [51] 菱形金刚石 277~600 240~564 923~600 958~641 89~63 89~64 0.39~3.3 7~70 [48] — 670~1820 — 420~540 — 87~60 0.4~6.5 11.4~99.7 [52] 截头立方体 1720~1370 1625~1426 180~530 331~620 94~76 91~80 0.99~3.19 10~40 [48] 截头立方八面体 876~807 862~1049 324~564 862~1049 82~64 81~64 2.37~4.62 25~100 [48] 菱形十二面体 1250~950 1299~1058 250~550 246~506 90~66 89~68 0.22~2.97 7~88 [48] — — — 67~129 — 84~67 0.55 — [53] 小斜方截半立方体 820~670 877~794 380~530 348~438 84~64 89~68 2.23~4.4 39~93 [48] 十二面体 — 150 — 500 — 80 1.22 12.7 [54] 500, 450 560, 486 120, 170 140, 216 — 68~84 0.55~3.49 15.8~91.8 [55] 四面体 500 — 0.2~0.39 — 50~75 — 4.3~1.9 57~156 [56] 八角框架 770 — 0.2~0.4 — 50~75 — 4.6~1.2 34~172 [56] 螺旋杆架 — — 0.9~1.1 — 55~60 55~61 3.4~26.3 103~402 [55] 三周期极小
曲面螺旋体— 560~1600 — — — 80~95 0.13~1.25 6.5~81.3 [57] 三周期极小
曲面菱体— 480~1450 — — — 80~95 0.12~1.25 4.66~69.21 [57] 随着单元结构设计的不断深入,为了获得更好的模量、强度等综合性能,单元结构设计方法得到了延伸,出现了拓扑结构、复合结构、功能梯度结构方法,如图 5所示。显然,SLM在这些结构制造上,展现出了强大的空间制造能力,为多孔结构设计提供了自由设计空间,对于降低Ti-6Al-4V弹性模量作为植入体是十分可观的。然而,尽管带多孔结构设计和尺寸参量取得了很大进展,但现对于多孔结构的力学性能表征主要集中于压缩强度的检测,缺乏全面的综合性能评估。如BARTOLOMEU等人[61]研究发现, 随着多孔尺寸的增大,其耐磨性变弱。因此,Ti-6Al-4V的多孔结构设计仍需深入研究。
-
植入体服役于牙科咀嚼或充当承载部分会频繁承受人体正常活动下的负载,要求植入器械必须具有一定的抗疲劳特性。而实际上材料在SLM高能快速激光成形的过程中,熔池不稳定带来的孔隙、球化、热应力等工艺缺陷以及细晶增加裂纹源的问题不可避免地加剧了裂纹的萌生和扩展的机率。研究表明, Ti-6Al-4V经SLM打印成形后,由于表面粗糙度相对较高、孔隙和应力的存在,其抗疲劳特性远低于轧制件[62-63],特别是对于具有结构单元特性的植入体而言,单元结构连接处的局部缺陷引起应力集中现象将进一步降低其抗疲劳强度[64-65]。此外,SLM具有成形原理上的方向异性,使得SLM成形后疲劳特性也具有各向异性问题[66]。
为了提高SLM成形Ti-6Al-4V的疲劳特性,除了前文提到从工艺控制成形缺陷外,众多学者还研究了通过不同后处理手段来提高疲劳性能。HACKEL等人[67]发现, 通过表面激光喷丸强化,Ti-6Al-4V打印件的疲劳强度能得到大幅提升。LEUDERS等人[68]、ZHANG等人[69]的研究表明, 热等静压也能有效提高疲劳特性。但是,DALLAGO等人[70]也报道了热等静压处理的局限性,认为其并不能改善表面缺陷形貌,反而会降低硬度带来不利影响。为了更直观分析不同后处理方式对疲劳特性的影响,BENEDETTI等人[71]分别对比了经退火、电解质抛光、喷丸、热等静压处理及未处理的SLM成形件的抗疲劳特性,将其结果和原因总结于表 3中。
表 3 不同后处理方式对疲劳特性影响[71]
处理方式 效果 原因 退火 不明显 应力得到消除,但硬度下降 电解质抛光 不明显 暴露了内部存在的缺陷 喷丸 提高 引入了表面压缩应力 热等静压 提高 消除了内部孔隙 从上述研究分析可以看出,Ti-6Al-4V经SLM成形后,疲劳失效存在表面、内部裂纹萌生两种机制[72]。这种由于表面缺陷和内部快速成形热应力集中、组织形态不稳定等固有特点与疲劳特性表现出的复杂相关性,使得疲劳特性要求较高的植入件增加了处理难度。因此,综合控制成形工艺、辅助后处理以确保内部质量、结合喷丸、抛光等处理提高表面质量可能才是实现高疲劳寿命最佳方式。如NICOLETTO等人[73]采用二次退火结合表面加工处理后,其疲劳特性与抛光态的锻造方式相当。另外,研究表明[74-75], 对于复杂结构Ti-6Al-4V件,结构参量是否合理也影响着其疲劳特性, 因此,设计合理结构也是提高疲劳特性的重要思路。
-
一直以来, Ti-6Al-4V被认为不适合长期植入体内,原因在于Al和V元素长期植入难免会受到磨损和腐蚀而析出,引发炎症甚至细胞病变导致相容性下降。同时植入体的磨损腐蚀行为还影响着植入的结构稳定性。为了研究SLM成形后Ti-6Al-4V的耐磨性和耐腐蚀性能力, BARTOLOMEU等人[76]用实验对比了热压、铸造、SLM 3种方式下Ti-6Al-4V的硬度及与Al2O3作用的耐磨性,发现SLM得到的硬度和耐磨性最高,认为快速凝固再结晶的过程中,大量、细小的马氏体组织提高了整体的硬度和耐磨性。同样,LU等人[77]用实验对比了Ti-6Al-4V经SLM与铸造不同方式的摩擦行为,结果表明,SLM成形方式拥有更高的耐磨性。
然而,其耐腐蚀性能存在一定争议。表 4中列出了不同研究人员对SLM成形Ti-6Al-4V的腐蚀行为研究结果。可以看出,不同试验条件和对比参照物下,SLM成形的Ti-6Al-4V的耐腐蚀性表现出很大的差异,而对于热处理前后耐腐蚀性的变化也是结论不一。
表 4 SLM成形Ti-6Al-4V的相关耐腐蚀性行为对比研究
作者/时间 腐蚀介质 主要工作 主要结论 YE[78]/2014 0.9%NaCl 对比了SLM热处理前后与铸造件的电化学腐蚀行为 SLM强于铸造,热处理后重新排布了内部组织,消除了内部应力,耐腐蚀能力得到提高 DAI [79]/2016 3.5%NaCl 对比了SLM与商业5级样的电化学腐蚀行为 SLM耐腐蚀性差,α′相的存在以及β相组织过少, 降低了耐腐蚀性能 CHEN[80]/2016 模拟体液 对比了SLM成形Ti-6Al-4V异向面与商业轧制件的电化学腐蚀行为 耐腐蚀性表现出方向异性,但整体耐腐蚀性仍强于商业轧制件 ZHAO[81]/2017 模拟体液 对比了SLM、EBM、锻造方式下Ti-6Al-4V的腐蚀行为 EBM腐蚀速率与电位有关,SLM耐腐蚀总是强于铸造,三者腐蚀速率都远低于美国腐蚀工程师协会标准 LONGHITANO[82]/2018 磷酸缓冲盐溶液 对比了不同热处理手段对于SLM成形Ti-6Al-4V的电化学腐蚀行为 热处理后的β相组织降低了耐腐蚀性能,提出一种阳极氧化的表面处理手段,处理后耐腐蚀能力与常规锻造件相当 此外,由于植入器械的摩擦磨损与腐蚀作用是同时存在的,TOPTAN等人[83]对比了商业、SLM和热压样品在摩擦磨损与腐蚀协同作用下的抵抗特性,表明三者体积损失无统计学差异。
上述研究表明, Ti-6Al-4V经SLM成形后的耐磨性能优于传统加工路线,但是,Ti-6Al-4V经SLM成形后其耐腐蚀性、腐蚀因素及其相互作用机理尚缺乏深入和系统地研究,没能形成统一的结论。
-
细胞相容性的安全评估及骨整合性对于医用的Ti-6Al-4V非常关键。为了深入分析SLM成形后Ti-6Al-4V表面化学成分对细胞可能的影响, VAITHILINGAM等人[84]对比了SLM磨抛前后与锻造磨抛处理Ti-6Al-4V的表面化学成分,发现SLM表面主要由Ti, Al的氧化物形式存在,而SLM和锻造经抛光处理后表面存在少许V的氧化物,但并没有影响到细胞的生长行为,SLM抛光前后,小鼠细胞均能高活力生长。
另外, 为了评估Ti-6Al-4V经SLM成形后作为植入物的细胞相容性和骨整合性,RUI等人[85]通过大样本动物活体实验,证明了Ti-6Al-4V支架具有良好的生物相容性和骨传导性。ZHANG等人[86]对基于SLM打印的Ti-6Al-4V样品与标准临床植入件分别展开了动物体内、体外对比实验。体内、体外实验均表明,基于SLM的打印组比标准植入物组显示出更好的细胞粘附、分化水平。体内实验表明,打印组早期阶段表现出更好的骨整合性,如图 6所示。WANG等人[87]研究了SLM退火处理后植入件的生物相容性。体外实验表明,退火处理与未退火处理两组实验对象的成骨细胞都能正常生长,而经退火处理的样件,成骨细胞分布更均匀、扩散效果更好,如图 7所示。因此,从短期来看,现有SLM成形Ti-6Al-4V并没有表现出生物不相容和成骨能力弱的问题。
图 6 体内实验对照组与SLM打印组骨整合情况[86]
图 7 热处理与未热处理体外表面细胞生长对比情况[87]
综合上述基础工艺、力学性能、生物相容性研究结果可知,由SLM成形的Ti-6Al-4V能实现较为精确的生产;相关基本力学性能经适当的后处理手段后能满足现有医疗器械生产的标准,部分力学性能优于传统加工方式;短期来看,SLM成形Ti-6Al-4V的这种方式,具有良好的综合耐腐蚀性和耐磨性能力,体内、体外实验均表现出优异的生物相容性;而长期来看,是否需要对器械表面改性仍需长时间的考察和实践。
激光选区熔化Ti-6Al-4V在医疗器械领域的研究现状
Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications
-
摘要: 激光选区熔化技术(SLM)因其具备高复杂结构制造能力而在医疗器械制造上展现着独特的优势。近年来,SLM在医疗器械制造上日趋活跃,综述了基于激光选区熔化成形、应用于创伤外科医疗器械生产制造Ti-6Al-4V的研究现状。包括SLM成形Ti-6Al-4V的基础工艺、力学性能、细胞相容性三方面的研究进展,同时举例了一些基于SLM成形Ti-6Al-4V医疗器械的应用及案例。最后针对基于此技术制造医疗器械研究存在的问题进行了总结。尽管SLM成形Ti-6Al-4V在医疗领域发展相对缓慢,但现有的研究和潜力表明,随着基础制造研究的不断深入和临床不断的实践,创伤外科的精准治疗方案将无疑有望成为可能。Abstract: Selective laser melting (SLM) is used in medical device manufacturing recently due to the unique capability of fabricating high-complexity structures. With the growing popularity of SLM in medical device manufacturing, this paper mainly reviews the research progress of Ti-6Al-4V fabricated by SLM for surgical medical device applications, including the basic technics of SLM-Ti-6Al-4V fabrication, the achievable mechanical properties, cell compatibility, and some application cases. In addition, we summarizes the underlying problems in the field of medical device manufacturing based on the SLM tethnics. Although the development of SLM formed Ti-6Al-4V is relatively slow in the field of medical application, the existing research and potential indicate that with the continuous intensive research of basic manufacture and the continuous clinical practice, the precise treatment of trauma surgery will undoubtedly become possible.
-
Key words:
- optical fabrication /
- selective laser melting /
- Ti-6Al-4V /
- medical devices
-
图 3 离焦量与能量密度引起的微观组织的变化[36]
a—离焦值为2mm,能量密度为33.74J/mm3 b—离焦值为2mm,能量密度为50.62J/mm3 c—离焦值为4mm,能量密度为50.62J/mm3
图 4 SLM成形Ti-6Al-4V原始态和热等静压处理后的拉伸应力-应变曲线对比[38]
图 6 体内实验对照组与SLM打印组骨整合情况[86]
图 7 热处理与未热处理体外表面细胞生长对比情况[87]
图 8 基于SLM成形的可摘除义齿[89]
图 9 通过加强块植入重建髋关节案例[90]
a—术前CT关节图像b—术后随访CT关节图像c—末次随访CT关节图像
图 10 3种基于SLM成形多孔通道的载药结构
a—局部载药结构设计b—整体结构模型[92]
表 1 工艺参量对Ti-6Al-4V成形密度的影响研究
作者/时间 主要考察参量 主要结果/结论 THIJS[3] /2010 扫描策略 对比单向、z形及z形具有一定旋转角的3种不同扫描策略, z形旋转扫描具有更高的致密度,可达99.9% BARTOLOMEU[4]/2016 功率、间距、速度 利用数理统计方法分析了各参量之间存在相互作用,相同能量密度下,速度比间距对密度的影响更大 SHI[5]/ 2016
SHI[6]/2018层厚 高功率(400W)、高层厚(200μm)、搭配大光斑直径, 分别实现了粗粉(53μm~106μm)99.95%和99.99%相对密度的成形 HAN[7]/2017 速度、间距 搭配不同参量,能量密度在120J/mm3~190J/mm3之间为Ti-6Al-4V最佳工艺窗口范围,相对密度大于99.95% 表 2 常见不同单元结构类型尺寸设计的相关制造性能参考值[47]
单元类型 孔径/μm 结构大小/μm 多孔度/% 杨氏模量/
GPa屈服强度/
MPa参考文献 设计值 测量值 设计值 测量值 设计值 测量值 立方体 348~720 451~823 1452~1080 1413~1020 65~90 63~87 1.76~4.62 29~110 [48-49] 550, 800 — 300, 400 — 70.3~70.7 70.2~68.7 5.1~6.7 155~164 [50] 1000~2040 765~1020 450, 800 466~941 60.91~75.83 49.75~59.32 0.57~2.92 7.28~163.02 [51] 菱形金刚石 277~600 240~564 923~600 958~641 89~63 89~64 0.39~3.3 7~70 [48] — 670~1820 — 420~540 — 87~60 0.4~6.5 11.4~99.7 [52] 截头立方体 1720~1370 1625~1426 180~530 331~620 94~76 91~80 0.99~3.19 10~40 [48] 截头立方八面体 876~807 862~1049 324~564 862~1049 82~64 81~64 2.37~4.62 25~100 [48] 菱形十二面体 1250~950 1299~1058 250~550 246~506 90~66 89~68 0.22~2.97 7~88 [48] — — — 67~129 — 84~67 0.55 — [53] 小斜方截半立方体 820~670 877~794 380~530 348~438 84~64 89~68 2.23~4.4 39~93 [48] 十二面体 — 150 — 500 — 80 1.22 12.7 [54] 500, 450 560, 486 120, 170 140, 216 — 68~84 0.55~3.49 15.8~91.8 [55] 四面体 500 — 0.2~0.39 — 50~75 — 4.3~1.9 57~156 [56] 八角框架 770 — 0.2~0.4 — 50~75 — 4.6~1.2 34~172 [56] 螺旋杆架 — — 0.9~1.1 — 55~60 55~61 3.4~26.3 103~402 [55] 三周期极小
曲面螺旋体— 560~1600 — — — 80~95 0.13~1.25 6.5~81.3 [57] 三周期极小
曲面菱体— 480~1450 — — — 80~95 0.12~1.25 4.66~69.21 [57] 表 3 不同后处理方式对疲劳特性影响[71]
处理方式 效果 原因 退火 不明显 应力得到消除,但硬度下降 电解质抛光 不明显 暴露了内部存在的缺陷 喷丸 提高 引入了表面压缩应力 热等静压 提高 消除了内部孔隙 表 4 SLM成形Ti-6Al-4V的相关耐腐蚀性行为对比研究
作者/时间 腐蚀介质 主要工作 主要结论 YE[78]/2014 0.9%NaCl 对比了SLM热处理前后与铸造件的电化学腐蚀行为 SLM强于铸造,热处理后重新排布了内部组织,消除了内部应力,耐腐蚀能力得到提高 DAI [79]/2016 3.5%NaCl 对比了SLM与商业5级样的电化学腐蚀行为 SLM耐腐蚀性差,α′相的存在以及β相组织过少, 降低了耐腐蚀性能 CHEN[80]/2016 模拟体液 对比了SLM成形Ti-6Al-4V异向面与商业轧制件的电化学腐蚀行为 耐腐蚀性表现出方向异性,但整体耐腐蚀性仍强于商业轧制件 ZHAO[81]/2017 模拟体液 对比了SLM、EBM、锻造方式下Ti-6Al-4V的腐蚀行为 EBM腐蚀速率与电位有关,SLM耐腐蚀总是强于铸造,三者腐蚀速率都远低于美国腐蚀工程师协会标准 LONGHITANO[82]/2018 磷酸缓冲盐溶液 对比了不同热处理手段对于SLM成形Ti-6Al-4V的电化学腐蚀行为 热处理后的β相组织降低了耐腐蚀性能,提出一种阳极氧化的表面处理手段,处理后耐腐蚀能力与常规锻造件相当 -
[1] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review[J]. Progress in Materials Science, 2009, 54(3): 397-425. doi: 10.1016/j.pmatsci.2008.06.004 [2] ZHOU B, ZHOU J, LI H, et al. A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum[J]. Materials Science and Engineering, 2018, A724: 1-10. [3] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303-3312. doi: 10.1016/j.actamat.2010.02.004 [4] BARTOLOMEU F, FARIA S, CARVALHO O, et al. Predictive models for physical and mechanical properties of Ti6Al4V produced by selective laser melting[J]. Materials Science and Engineering, 2016, A663: 181-192. [5] SHI X, MA S, LIU C, et al. Performance of high layer thickness in selective laser melting of Ti-6Al-4V[J]. Materials (Basel, Switzerland), 2016, 9(12): 975-990. doi: 10.3390/ma9120975 [6] SHI W, LIU Y, SHI X, et al. Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V[J]. Materials, 2018, 11(7): 1237-1254. doi: 10.3390/ma11071237 [7] HAN J, YANG J J, YU H, et al. Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density[J]. Rapid Prototyping Journal, 2017, 23(2): 217-226. doi: 10.1108/RPJ-12-2015-0193 [8] KASPEROVICH G, HAUSMANN J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. Journal of Materials Processing Technology, 2015, 220: 202-214. doi: 10.1016/j.jmatprotec.2015.01.025 [9] ZHANG Q, LIANG Z, CAO M, et al. Microstructure and mechanical properties of Ti6Al4V alloy prepared by selective laser melting combined with precision forging[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1036-1042. doi: 10.1016/S1003-6326(17)60121-3 [10] THÖNE M, LEUDERS S, RIEMER A, et al. Influence of heat-treatment on selective laser melting products-e.g.Ti-6Al-4V[C]//Proceedings of the 23rd Annual International Solid Freeform Fabrication Symposium : An Additive Manufacturing Conference. Austin, USA: University of Texas, 2012: 492-496. [11] HUSSEIN A, HAO L, YAN C, et al. Advanced lattice support structures for metal additive manufacturing[J]. Journal of Materials Processing Technology, 2013, 213(7): 1019-1026. doi: 10.1016/j.jmatprotec.2013.01.020 [12] VRANCKEN B, BULS S, KRUTH J P. Preheating of selective laser melted Ti-6Al-4V: Microstructure and mechanical properties[C]// Proceedings of the 13th World Conference on Titanium. San Diego, USA: The Minerals, Metals & Materials Society, 2016: 1269-1277. [13] LIU Y, YANG Y, WANG D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1): 647-656. [14] CHENG B, SHRESTHA S, CHOU K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 2016, 12: 240-251. doi: 10.1016/j.addma.2016.05.007 [15] MISHUROVA T, CABEZA S, ARTZT K, et al. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V[J]. Materials, 2017, 10(4): 348-362. doi: 10.3390/ma10040348 [16] PARRY L A, ASHCROFT I A, WILDMAN R D. Geometrical effects on residual stress in selective laser melting[J]. Additive Manufacturing, 2019, 25: 166-175. doi: 10.1016/j.addma.2018.09.026 [17] SUN D, GU D, LIN K, et al. Selective laser melting of titanium parts: Influence of laser process parameters on macro- and microstructures and tensile property[J]. Powder Technology, 2019, 342: 371-379. doi: 10.1016/j.powtec.2018.09.090 [18] LIU Y J, LI X P, ZHANG L C, et al. Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting[J]. Materials Science and Engineering, 2015, A642: 268-278. [19] WANG X L. Study on process optimization and property of titanium alloy manufactured by selective laser melting[D].Guangzhou: South China University of Technology, 2016: 60-65(in Chinese). [20] van BAEL S, KERCKHOFS G, MOESEN M, et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures[J]. Materials Science and Engineering, 2011, A528(24): 7423-7431. [21] CHAN K S, KOIKE M, MASON R L, et al. Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for den-tal implants[J]. Metallurgical and Materials Transactions, 2013, A44(2): 1010-1022. [22] DO D K, LI P. The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting[J]. Virtual and Physical Prototyping, 2016, 11(1): 41-47. doi: 10.1080/17452759.2016.1142215 [23] WYCISK E, EMMELMANN C, SIDDIQUE S, et al. High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting[J]. Advanced Materials Research, 2013, 816/817: 134-139. doi: 10.4028/www.scientific.net/AMR.816-817.134 [24] CHEN C, HAO Y, BAI X, et al. 3-D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model[J]. Materials & Design, 2019, 175: 107824. [25] WANG Z, XIAO Z, TSE Y, et al. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy[J]. Optics & Laser Technology, 2019, 112: 159-167. [26] GE Y N, WU M P, MAO Y Y, et al. Effect of scanning strategy on forming precision of titanium alloy by selective laser melting [J]. Laser & Optoelectronics Progress, 2018, 55(9): 091403(in Chin-ese). [27] YASA E, DECKERS J. The investigation of the influence of laser remelting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327. doi: 10.1108/13552541111156450 [28] LIU J H, ZHU H H, HU Zh H, et al. Control of elevated edge in selective laser melt molding[J]. Chinese Journal of Lasers, 2017, 44(12): 1202007(in Chinese). doi: 10.3788/CJL201744.1202007 [29] DECKERS J, YASA E, KRUTH J P. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327. doi: 10.1108/13552541111156450 [30] VAITHILINGAM J, GOODRIDGE R D, HAGUE R J M, et al. The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 232: 1-8. doi: 10.1016/j.jmatprotec.2016.01.022 [31] VILARO T, COLIN C, BARTOUT J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions, 2011, A42(10): 3190-3199. [32] KHORASANI A, GIBSON I, GOLDBERG M, et al. On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V[J]. Rapid Prototyping Journal, 2017, 23(2): 295-304. doi: 10.1108/RPJ-02-2016-0022 [33] CAIN V, THIJS L, VAN HUMBEECK J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing, 2015, 5: 68-76. doi: 10.1016/j.addma.2014.12.006 [34] SHUNMUGAVEL M, POLISHETTY A, LITTLEFAIR G. Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4V cylindrical bars[J]. Procedia Technology, 2015, 20: 231-236. doi: 10.1016/j.protcy.2015.07.037 [35] SIMONELLI M, TSE Y Y, TUCK C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science and Engineering, 2014, A616: 1-11. [36] XU W, SUN S, ELAMBASSERIL J, et al. Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties[J]. JOM, 2015, 67(3): 668-673. doi: 10.1007/s11837-015-1297-8 [37] ALI H, MA L, GHADBEIGI H, et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering, 2017, A695: 211-220. [38] QIU C, ADKINS N J E, ATTALLAH M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V[J]. Materials Science and Engineering, 2013, A578: 230-239. [39] LI W X, YI D Q, LIU H Q, et al. Effect of the heat treatment process on microstructure and mechanical properties of the TC4 alloy processed by selective laser melting [J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(1): 70-78(in Chinse). [40] ROOHANI-ESFAHANI S, NEWMAN P, ZREIQAT H. Design and fabrication of 3-D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects[J]. Scientific Reports, 2016, 6: 19468. doi: 10.1038/srep19468 [41] SHIBATA Y, TANIMOTO Y, MARUYAMA N, et al. A review of improved fixation methods for dental implants. Part Ⅱ: Biomechanical integrity at bone-implant interface[J]. Journal of Prosthodontic Research, 2015, 59(2): 84-95. doi: 10.1016/j.jpor.2015.01.003 [42] KELLY A, HIDEO N. Metallic scaffolds for bone regeneration[J]. Materials, 2009, 2(3):790-832. doi: 10.3390/ma2030790 [43] MARIN E, FUSI S, PRESSACCO M, et al. Characterization of ce-llular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium[J].Journal of the Mechanical Behavior of Biome-dical Materials, 2010, 3(5): 373-381. doi: 10.1016/j.jmbbm.2010.02.001 [44] BARTOLOMEU F, COSTA M M, GOMES J R, et al. Implant surface design for improved implant stability-A study on Ti6Al4V dense and cellular structures produced by selective laser melting[J]. Tribology International, 2019, 129: 272-282. doi: 10.1016/j.triboint.2018.08.012 [45] WANG Y, SHEN Y, WANG Z, et al. Development of highly porous titanium scaffolds by selective laser melting[J]. Materials Letters, 2010, 64(6):674-676. doi: 10.1016/j.matlet.2009.12.035 [46] SHENG Z, WEI Q, CHENG L, et al. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting[J]. Materials & Design, 2014, 63(21): 185-193. [47] ZHANG X Y, FANG G, ZHOU J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: A review[J]. Materials, 2017, 10(1):50-52. [48] AHMADI S, YAVARI S, WAUTHLE R, et al. Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties[J]. Materials, 2015, 8(4):1871-1896. doi: 10.3390/ma8041871 [49] KADKHODAPOUR J, MONTAZERIAN H, DARABI A C, et al. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50: 180-191. doi: 10.1016/j.jmbbm.2015.06.012 [50] WIEDING J, JONITZ A, BADER R. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds[J]. Materials, 2012, 5(8):1336-1347. doi: 10.3390/ma5081336 [51] PARTHASARATHY J, STARLY B, RAMAN S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(3): 249-259. doi: 10.1016/j.jmbbm.2009.10.006 [52] WEIβMANN V, BADER R, HANSMANN H, et al. Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds[J]. Materials & Design, 2016, 95: 188-197. [53] HEINL P, KÖRNER C, SINGER R F. Selective electron beam melting of cellular titanium: Mechanical properties[J]. Advanced Engineering Materials, 2008, 10(9):882-888. doi: 10.1002/adem.200800137 [54] CAMPOLI G, BORLEFFS M S, AMIN YAVARI S, et al. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing[J]. Materials & Design, 2013, 49(C):957-965. [55] WAUTHLE R, JOHAN V D S, AMIN Y S, et al. Additively manufactured porous tantalum implants[J]. Acta Biomaterialia, 2015, 14:217-225. doi: 10.1016/j.actbio.2014.12.003 [56] ARABNEJAD S, JOHNSTON R B, PURA J A, et al. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints[J]. Acta Biomaterialia, 2015, 30(8):345-356. [57] YAN C, HAO L, HUSSEIN A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51:61-73. doi: 10.1016/j.jmbbm.2015.06.024 [58] CHALLIS V J, XU X, LAI C Z, et al. High specific strength and stiffness structures produced using selective laser melting[J]. Materials & Design, 2014, 63(2): 783-788. [59] FOUSOVÁ M, VOJTĚCH D, KUBÁSEK J, et al. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 368-376. doi: 10.1016/j.jmbbm.2017.01.043 [60] HAN Ch J, LI Y, WANG Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80: 119-127. doi: 10.1016/j.jmbbm.2018.01.013 [61] BARTOLOMEU F, SAMPAIO M, CARVALHO O, et al. Tribological behavior of Ti6Al4V cellular structures produced by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 128-134. doi: 10.1016/j.jmbbm.2017.01.004 [62] CHAN K S, KOIKE M, MASON R L, et al. Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for den-tal implants[J]. Metallurgical and Materials Transactions, 2013, A44(2): 1010-1022. [63] EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering, 2014, A598: 327-337. [64] van HOOREWEDER B, APERS Y, LIETAERT K, et al. Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting[J]. Acta Biomaterialia, 2017, 47: 193-202. doi: 10.1016/j.actbio.2016.10.005 [65] DALLAGO M, ZANINI F, CARMIGNATO S, et al. Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices[J]. Procedia Structural Integrity, 2018, 13: 161-167. doi: 10.1016/j.prostr.2018.12.027 [66] YADROITSEV I, KRAKHMALEV P, YADROITSAVA I, et al. Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications[J]. JOM, 2018, 70(3): 372-377. doi: 10.1007/s11837-017-2655-5 [67] HACKEL L, RANKIN J R, RUBENCHIK A, et al. Laser peening: A tool for additive manufacturing post-processing[J]. Additive Manufacturing, 2018, 24: 67-75. doi: 10.1016/j.addma.2018.09.013 [68] LEUDERS S, THÖNE M, RIEMER A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48: 300-307. doi: 10.1016/j.ijfatigue.2012.11.011 [69] ZHANG H, DONG D, SU S, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V [DB/OL].(2019-01-03)[2019-09-25].https://www.sciencedirect.com/science/article/pii/S1000936119300196. [70] DALLAGO M, FONTANARI V, TORRESANI E, et al. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78: 381-394. doi: 10.1016/j.jmbbm.2017.11.044 [71] BENEDETTI M, FONTANARI V, BANDINI M, et al. Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: Mean stress and defect sensitivity[J]. International Journal of Fatigue, 2018, 107: 96-109. doi: 10.1016/j.ijfatigue.2017.10.021 [72] GVNTHER J, KREWERTH D, LIPPMANN T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2017, 94: 236-245. doi: 10.1016/j.ijfatigue.2016.05.018 [73] NICOLETTO G, MAISANO S, ANTOLOTTI M, et al. Influence of post fabrication heat treatments on the fatigue behavior of Ti-6Al-4V produced by selective laser melting[J]. Procedia Structural Integrity, 2017, 7: 133-140. doi: 10.1016/j.prostr.2017.11.070 [74] ZHAO D, HUANG Y, AO Y, et al. Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88: 478-487. doi: 10.1016/j.jmbbm.2018.08.048 [75] AMIN YAVARI S, AHMADI S M, WAUTHLE R, et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43: 91-100. doi: 10.1016/j.jmbbm.2014.12.015 [76] BARTOLOMEU F, BUCIUMEANU M, PINTO E, et al. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 829-838. doi: 10.1016/S1003-6326(17)60060-8 [77] LU Y Q, MEI Z Y, ZHANG Q Q, et al. Friction and wear performance test of SLM formed titanium alloy and cast titanium alloy[C]//The 12th National Conference on Prosthodontics.Beijing: Chinese Stomatological Association, 2018: 117(in Chinese). [78] YE Z H. The personalized design and process research of selective laser melting manufacturing of Ti-6Al-4V tibial implant[D].Guangzhou: South China University of Technology, 2014: 68-69(in Chinese). [79] DAI N, ZHANG L, ZHANG J, et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution[J]. Corrosion Science, 2016, 102: 484-489. doi: 10.1016/j.corsci.2015.10.041 [80] CHEN L Y, HUANG J C, LIN C H, et al. Anisotropic response of Ti-6Al-4V alloy fabricated by 3-D printing selective laser melting[J]. Materials Science & Engineering, 2017, A682: 389-395. [81] ZHAO B, WANG H, QIAO N, et al. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo[J]. Materials Science and Engineering, 2017, C70: 832-841. [82] LONGHITANO G A, ARENAS M A, CONDE A, et al. Heat treatments effects on functionalization and corrosion behavior of Ti-6Al-4V ELI alloy made by additive manufacturing[J]. Journal of Alloys and Compounds, 2018, 765: 961-968. doi: 10.1016/j.jallcom.2018.06.319 [83] TOPTAN F, ALVES A C, CARVALHO Ó, et al. Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy[J]. Journal of Materials Processing Technology, 2019, 266: 239-245. doi: 10.1016/j.jmatprotec.2018.11.008 [84] VAITHILINGAM J, PRINA E, GOODRIDGE R D, et al. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications[J]. Materials Science and Engineering, 2016, C67: 294-303. [85] RUI M, ZHENG X, ZHANG Y Q, et al. Three-dimensional printing porous titanium alloy scaffold repairs radial bone defect in rabbits [J]. Chinese Journal of Tissue Engineering Research, 2019, 23(18): 2789-2793(in Chinese). [86] ZHANG J, ZHOU W, WANG H, et al. 3D-printed surface promoting osteogenic differentiation and angiogenetic factor expression of BMSCs on Ti6Al4V implants and early osseointegration in vivo[J]. Journal of Materials Science & Technology, 2019, 35(2): 336-343. [87] WANG M, WU Y, LU S, et al. Fabrication and characterization of selective laser melting printed Ti-6Al-4V alloys subjected to heat treatment for customized implants design[J]. Progress in Natural Science: Materials International, 2016, 26(6): 671-677. doi: 10.1016/j.pnsc.2016.12.006 [88] NANJIXIONG. Application of domestic medical institutions in 3-D printing human implants [EB/OL].(2016-10-13)[2019-09-02].www.nanjixiong.com(in Chinese). [89] LIU Y F, WANG W N, YU H, et al. Study on the fit of titanium alloy removable partial denture framework fabricated by selective laser melting[J]. Journal of Practical Stomatology, 2017, 33(3): 302-305(in Chinese). [90] FU J, NI M, CHEN J Y, et al. Early clinical outcomes of individua-lized 3-D printed porous Ti6Al4V augment reconstruction in severe acetabular bone defect[J].Chinese Journal Bone and Joint Surgery, 2018, 11(6): 401-407(in Chinese). [91] HASSANIN H, FINET L, COX S C, et al. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels[J]. Additive Manufacturing, 2018, 20: 144-155. doi: 10.1016/j.addma.2018.01.005 [92] COX S C, JAMSHIDI P, EISENSTEIN N M, et al. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants[J]. Materials Science and Engineering, 2016, C64: 407-415.