高级检索

相干测风激光雷达探测效能评估研究

吴俊杰, 徐足音, 王耀辉, 杨传军, 陈明

吴俊杰, 徐足音, 王耀辉, 杨传军, 陈明. 相干测风激光雷达探测效能评估研究[J]. 激光技术, 2023, 47(5): 716-722. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.021
引用本文: 吴俊杰, 徐足音, 王耀辉, 杨传军, 陈明. 相干测风激光雷达探测效能评估研究[J]. 激光技术, 2023, 47(5): 716-722. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.021
WU Junjie, XU Zuyin, WANG Yaohui, YANG Chuanjun, CHEN Ming. Evaluation of detection efficiency of coherent wind LiDAR[J]. LASER TECHNOLOGY, 2023, 47(5): 716-722. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.021
Citation: WU Junjie, XU Zuyin, WANG Yaohui, YANG Chuanjun, CHEN Ming. Evaluation of detection efficiency of coherent wind LiDAR[J]. LASER TECHNOLOGY, 2023, 47(5): 716-722. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.021

相干测风激光雷达探测效能评估研究

基金项目: 

中国民用航空飞行学院民航飞行技术与飞行安全重点实验室基金资助项目 FZ2020ZZ03

中国民用航空飞行学院科研基地项目 F2018KF05

国家重点研发计划资助项目 2021YFB2601701-01

详细信息
    作者简介:

    吴俊杰(1981-),男,博士,副教授,主要研究方向为航空气象。E-mail: wjunj@mail3.sysu.edu.cn

  • 中图分类号: V321.2;TN958.98

Evaluation of detection efficiency of coherent wind LiDAR

  • 摘要: 为了评估相干测风激光雷达在不同扫描模式下探测效能与气象要素之间的联系,使用2020-08~2021-07期间广汉机场相干测风激光雷达探测数据进行了分析验证。结果表明,方位角测量模式扫描方式下,探测距离在3 km之后,探测效能线性下降, 90°扫描时,500 m后探测效能开始线性下降;总体探测效能在11月最高,7月最低;11月至次年7月呈下降趋势,7~11月呈上升趋势;在日落后至日出前的探测效能较低,在午间探测效能最高;夏秋季节,激光雷达探测效能与PM2.5质量浓度呈现正相关,与降雨量的对数呈负相关。该研究为机场激光雷达识别低空风切变准确度提供了重要的基础保障。
    Abstract: In order to evaluate the relationship between detection efficiency and meteorological elements in different scanning modes of coherent wind light detection and ranging(LiDAR), the detection data of coherent wind LiDAR at Guanghan Airport from August 2020 to July 2021 were used for analysis and verification. The results show that the detection efficiency decreases linearly after the detection range is larger than 3 km under plane position indicator scanning mode; When scanning at 90°, the detection efficiency decreases linearly after 500 m; The overall detection efficiency was highest in November, lowest in July, and decreased from November to following year in July, and increased from July to November; The detection efficiency is low from sunset to sunrise, and the detection efficiency is highest at noon; In summer and autumn, LiDAR detection efficiency is positively correlated with PM2.5 concentration, and negatively correlated with logarithm of precipitation, it provides an important basic guarantee for the accuracy of airport LiDAR identification of low-level wind shear.
  • 图  1   广汉机场激光雷达及观测设施位置

    Figure  1.   Location of LiDAR and observation facilities at Guanghan Airport

    图  2   扫描结果

    Figure  2.   Scan results

    图  3   PPI、RHI扫描时不同距离的探测效能

    Figure  3.   Detection efficiency at different distances of PPI and RHI scanning

    图  4   PPI 4°、RHI 90°方向探测效能频率统计图

    Figure  4.   Statistics chart of detection efficiency frequency of PPI 4° and RHI 90° direction

    图  5   激光雷达月变化箱状图

    Figure  5.   Monthly box diagram of LiDAR

    图  6   散点图

    Figure  6.   Scatter diagram

    表  1   逐月探测效能与PM2.5质量浓度的相关系数表

    Table  1   Correlation between monthly detection efficiency and PM2.5 concentration

    month 1 2 3 4 5 6
    RPM2.5 0.29 0.56** 0.18 0.28 0.47** 0.29
    month 7 8 9 10 11 12
    RPM2.5 0.42* 0.59** 0.47** 0.48** 0.42* -0.16
    下载: 导出CSV

    表  2   有无降雨时探测效能的相关系数表(6~8月)

    Table  2   Correlations of detection efficiency with or without rainfall(from June to August)

    with rainfall without rainfall
    RPM2.5 0.32* 0.47**
    Rrainfall -0.30*
    下载: 导出CSV
  • [1] 黄仪方. 航空气象[M]. 成都: 西南交通大学出版社, 2011: 1-348.

    HUANG Y F. Aeronautical meteorology[M]. Chengdu: Southwest Jiaotong University Publishing House, 2011: 1-348(in Chinese).

    [2] 范琪, 朱晓林, 周鼎富, 等. 激光测风雷达分析典型高原机场风场特征[J]. 激光技术, 2020, 44(5): 525-531. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001

    FAN Q, ZHU X L, ZHOU D F, et al. Analysis of the wind field characteristics using the wind lidar in a typical plateau airport[J]. Laser Technology, 2020, 44(5): 525-531(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001

    [3] 王青梅, 郭利乐. 激光雷达在机场低空风切变探测中的应用[J]. 激光与红外, 2012, 42(12): 1324-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201212003.htm

    WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J]. Laser & Infrared, 2012, 42(12): 1324-1328(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201212003.htm

    [4]

    DONG D B, YANG Sh Zh, WENG N Q, et al. Analysis of observation performance of a mobile coherent doppler wind lidar using DBS scanning mode[J]. Journal of Physics, 2021, 1739(1): 012048.

    [5]

    GRECO S, EMMITT G D, GARSTANG M, et al. Doppler aerosol wind (DAWN) lidar during CPEX 2017: Instrument performance and data utility[J]. Remote Sensing, 2020, 12(18): 2951. DOI: 10.3390/rs12182951

    [6] 范琪, 朱克云, 郑佳锋, 等. 不同天气类型下全光纤相干激光测风雷达探测性能分析[J]. 中国激光, 2017, 44(2): 0210003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702037.htm

    FAN Q, ZHU K Y, ZHENG J F, et al. Detection performance analysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702037.htm

    [7] 张曦, 张建军, 丁媛媛, 等. 机场多普勒激光雷达风切变探测与识别[J]. 气象科技, 2021, 49(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202102005.htm

    ZHANG X, ZHANG J J, DING Y Y, et al. Airfield Doppler laser radar wind shear detection and identification[J]. Meteorological Science and Technology, 2021, 49(2): 184-191(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202102005.htm

    [8] 刘晓英, 吴松华, 张洪玮, 等. 基于相干多普勒测风激光雷达的不同成因类型的低空风切变观测[J]. 红外与毫米波学报, 2020, 39(4): 491-504. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202004014.htm

    LIU X Y, WU S H, ZHANG H W, et al. Low-level wind shear observation based on different physical mechanisms by coherent Doppler lidar[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 491-504(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202004014.htm

    [9] 华志强, 黎倩, 黄轩, 等. 激光测风雷达在航空保障中的典型应用分析[J]. 激光技术, 2020, 44(5): 600-604. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012

    HUA Zh Q, LI Q, HUANG X, et al. Analysis of the typical application of laser wind measurement radar in aviation support[J]. Laser Technology, 2020, 44(5): 600-604(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012

    [10] 张涛, 黎倩, 郑佳锋, 等. 激光测风雷达研究微下击暴流引发的低空风切变[J]. 激光技术, 2020, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007

    ZHANG T, LI Q, ZHENG J F, et al. A study on low-level wind shear caused by microburst using LiDAR and other data[J]. Laser Technology, 2020, 44(5): 563-569(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007

    [11] 何涛, 侯鲁健, 吕波, 等. 激光雷达探测反演PM2.5质量浓度的精度研究[J]. 中国激光, 2013, 40(1): 0113001. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201301037.htm

    HE T, HOU L J, LV B, et al. Study of accuracy of lidar inversion PM2.5 concentration[J]. Chinese Journal of Lasers, 2013, 40(1): 0113001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201301037.htm

    [12]

    HON K K, CHAN P W. Application of LiDAR-derived eddy dissipation rate profiles in low-level wind shear and turbulence alerts at Hong Kong International Airport[J]. Meteorological Applications, 2014, 21(1): 74-85.

    [13] 雷山东, 杨婷, 柴文轩, 等. 联网激光雷达的观测性能综合平行比对[J]. 中国环境监测, 2020, 36(3): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202003024.htm

    LEI Sh D, YANG T, CHAI W X, et al. Comprehensive parallel comparison of observational performance of connected lidars[J]. Environmental Monitoring in China, 2020, 36(3): 153-162(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202003024.htm

    [14] 吴俊杰, 方璘, 王昊, 等. 面向机场的多普勒激光雷达风场反演技术研究[J]. 航空计算技术, 2020, 50(6): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ202006001.htm

    WU J J, FANG L, WANG H, et al. Research on airport-oriented Doppler lidar wind field inversion technology[J]. Aeronautical Computing Technique, 2020, 50(6): 1-4(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ202006001.htm

    [15] 盛裴轩. 大气物理学[M]. 北京: 北京大学出版社, 2013: 1-551.

    SHENG P X. Atmospheric physics[M]. Beijing: Peking University Press, 2013: 1-551(in Chinese).

    [16] 熊兴隆, 李永东, 冯帅, 等. PM2.5质量浓度廓线的激光雷达反演研究[J]. 光子学报, 2020, 49(4): 0401001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004005.htm

    XIONG X L, LI Y D, FENG Sh, et al. Lidar inversion of PM2.5 mass concentration vertical distribution[J]. Acta Photonica Sinica, 2020, 49(4): 0401001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004005.htm

    [17] 蒋兴文, 李跃清, 王鑫, 等. 青藏高原东部及下游地区冬季边界层的观测分析[J]. 高原气象, 2009, 28(4): 754-762. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904005.htm

    JIANG X W, LI Y Q, WANG X, et al. The observational analysis of atmospheric boundary layer structure in east part and downstream of tibetan plateau[J]. Plateau Meteorology, 2009, 28(4): 754-762(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904005.htm

    [18] 桑悦洋, 初奕琦, 刘喆, 等. 基于激光雷达数据对混合层高度与细颗粒物浓度关系的研究[J]. 北京大学学报(自然科学版), 2022, 58(3): 412-420. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202203003.htm

    SANG Y Y, CHU Y Q, LIU Zh, et al. Research on the relations between atmospheric mixing layer heights and fine particle concentrations with lidar measurements[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3): 412-420(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202203003.htm

    [19] 栾天, 郭学良, 张天航, 等. 不同降水强度对PM2.5的清除作用及影响因素[J]. 应用气象学报, 2019, 30(3): 279-291. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201903003.htm

    LUAN T, GUO X L, ZHANG T H, et al. The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities[J]. Journal of Applied Meteorological Science, 2019, 30(3): 279-291(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201903003.htm

    [20]

    FU S L, XIE Ch B, LI L, et al. PM2.5 concentration identification based on lidar detection[J]. Acta Photonica Sinica, 2021, 41(9): 0928001(in Chinese).

  • 期刊类型引用(5)

    1. 黄贻蔚,高向东,李来明,马波,张艳喜. 激光焊OCT熔深测量去噪及数据拟合方法研究. 激光技术. 2024(04): 590-596 . 本站查看
    2. 李康宁,徐良,杨海锋,崔辉,谷世伟,郑红彬. 复合传感技术在激光焊接过程质量监测中的应用. 机械制造文摘(焊接分册). 2023(02): 19-25 . 百度学术
    3. 李康宁,徐良,杨海锋,崔辉,谷世伟,郑红彬. 复合传感技术在激光焊接过程质量监测中的应用. 焊接. 2022(05): 36-42 . 百度学术
    4. 刘天元,鲍劲松,汪俊亮,顾俊. 融合时序信息的激光焊接熔透状态识别方法. 中国激光. 2021(06): 228-238 . 百度学术
    5. 彭聪,高向东,刘桂谦,刘秀航,孙友松,肖小亭. 激光功率对高强钢DP780-铝合金5052异种材料焊接的影响. 机床与液压. 2021(07): 22-25+47 . 百度学术

    其他类型引用(1)

图(6)  /  表(2)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  2
  • PDF下载量:  6
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-10-24
  • 发布日期:  2023-09-24

目录

    /

    返回文章
    返回