-
常温下,使用半导体阵列驱动电源对阵列进行供电,抽运脉冲宽度为200μs。利用型号为OPHIR NOVA Ⅱ的能量计对输出激光脉冲能量进行测量。通过TEC将LD阵列温控在60℃,阵列抽运电流设在106A(此时对应抽运能量为412mJ),在重复频率为1Hz时,测得激光器输出能量为62mJ,连续工作1min时的能量稳定度为1.6%。在重复频率为5Hz时,测得激光器输出能量为63mJ,连续工作1min时的能量稳定度为4.7%。进一步提高抽运电流,试验测得激光器的输出能量随阵列抽运电流和阵列抽运能量的变化曲线如图 4所示。由图 4可以看出,激光器输出能量随阵列抽运电流呈线性增加。当抽运电流达到130A时,激光器最高输出能量为108mJ,此时最高抽运能量为553mJ,对应的激光器光光转换效率为19.5%,激光器的斜效率为32.3%。从激光器输出能量趋势看,激光器输出能量远远没有达到饱和状态。随着抽运电流的提高,激光输出能量还会继续增大。激光器常温工作过程中,利用TEC温控和散热壳体的传导散热,激光输出脉冲能量表现出较好的稳定性。
Figure 4. a—output laser energy vs. pump current of the LD b—output laser energy vs. pump energy of the LD
使用感光相纸记录不同重复频率下的光斑形状,如图 5所示。经测量,激光输出光斑大小为∅4.5mm。由图 5可知,光斑呈稍微变形的三角形分布,与模拟计算的结果较为吻合。稍微变形是由于聚光腔上下热沉在实际装配时,存在一定的装配偏差,从而导致抽运光和散热不能够完全的对称,因而光斑会存在变形。
利用套孔法测量了激光器的输出发散角。测试时,采用焦距为2.5m的长焦透镜对激光器输出光斑进行聚焦,在透镜焦平面上放置直径5mm的小孔,在小孔后放置能量计。横向移动小孔位置,使得透过小孔的能量最大记为E1,去掉小孔后,能量记为E0,则激光器的发散角,通过下式进行计算:
$ \theta = \frac{d}{f}\sqrt {\frac{{-2}}{{\ln \left( {1-\frac{{{E_1}}}{{{E_0}}}} \right)}}} $
(1) 式中, θ为发散角(mrad); d为小孔直径(mm); f为透镜焦距(m)。
经过测量,激光器直接输出激光发散角为1.2mrad,因此激光器输出的光束质量因子M2=4,表现出较好的光束质量。
使用型号为New Focus 1623的纳秒探测器结合Tektronix TDS 3034B型300MHz示波器,测量得到激光器输出的脉冲宽度为9.18ns,如图 6所示。
为了验证激光器在机载环境下的适应性,对激光器进行了低温-55℃和高温60℃条件下的环境试验,试验结果如下。
(1) 低温-55℃时,通过TEC对上下热沉进行加热,将LD阵列温控在60℃,从而实现低温条件下激光器稳定输出。经试验测试,在LD抽运电流为145A时,对应LD抽运能量为641mJ,此时激光器输出能量为102mJ,对应激光器电光效率为15.9%。激光器在低温下效率有所下降,经分析认为这是由于低温下通过TEC对热沉进行加热温控时,热沉与环境温度存在较大的温差,会导致激光棒存在一定的变形,从而降低了激光器的效率。
(2) 高温60℃时,通过TEC对上下热沉进行散热温控,将LD阵列温控在60℃。高温下,激光器连续工作1min,在LD抽运电流为127A时,对应LD抽运能量为535mJ,输出激光能量为104mJ,稳定度为6.6%,对应的光光转换效率为19.4%。由于采用的LD阵列为高温阵列,工作温度点与高温环境一致,因此高温条件下不需要额外的风扇散热,即可实现较好的温控效果,而且激光棒变形很小,因此激光器具有较高的光光转换效率。
对激光器也进行了振动试验,振动前后激光器输出能量没有变化。
整个激光器封装后尺寸很小,约为140mm(长)×23mm(宽)×30mm(高),在5Hz重复频率条件下,输出大于100mJ的激光能量,同时脉冲宽度较窄,发散角小,表现出较好的光束质量, 且经过高低温环境及振动试验验证,性能稳定,因此, 特别适合于小型化机载激光测距机领域。
小型化高能量对称抽运热传导激光器
Miniature high-energy symmetrically-pumped conductive cooling laser
-
摘要: 为了解决热传导散热激光器抽运和散热不均匀导致光束质量下降的问题,采用一种对称抽运和对称散热的激光抽运构型,结合激光棒端面直接镀膜技术,设计了一种小型化热传导激光器,并进行了试验验证。结果表明,激光器在5Hz重复频率下输出大于100mJ的能量,脉冲宽度为9.18ns,能量稳定度优于8%;且通过了高低温、振动试验,性能稳定。这种对称抽运热传导激光器具有结构简单、输出能量高和光束质量好的优点,特别适合用于小型化机载激光测距领域。Abstract: In order to solve the problem of beam quality decline induced by asymmetrical pumping and cooling of traditional conductive cooling lasers, one laser pumping structure with symmetrical pumping and cooling was adopted. Combined with direct coating film on laser rod end face, one miniature conductive cooling laser was designed and tested experimentally. The results show that, the output laser energy is more than 100mJ, with the laser pulse repetition of 5Hz. The laser pulse width is 9.18ns, and the energy instability is better than 8%. The laser works steadily under high and low temperature or vibration circumstance. The symmetrically-pumped conductive cooling laser has advantages of simple structure, high energy and good beam quality. It is very suitable for miniature airborne laser rangefinders.
-
Key words:
- lasers /
- conductive cooling laser /
- symmetrically pump /
- miniature
-
-
[1] YANG Y, DING Q X, LIU H M. Application of laser technology in airborne EO detection and guidance system[J]. Infrared and Laser Engineering, 2008, 37(s3): 14-20(in Chinese). [2] TSO Y F, ROBERT L B. Diode laser-pumped solid-state lasers[J]. IEEE Journal of Quantum Elecronics, 1988, 24(6): 895-912. doi: 10.1109/3.210 [3] WALTER K. Solid-state laser engineering[M]. 6th ed. New York, USA: Springer Science+Business Media, Inc., 2006: 300-303. [4] LI L, DONG W W, NIE J P, et al. Transient thermal analysis of Nd:YAG crystal end-pumped by pulsed diode laser[J]. Laser Technology, 2011, 35(1): 94-98(in Chinese). [5] LEI Ch Q, WANG Y F, HUANG F, et al. Progress of high power solid-state laser pumping and coupling technology[J]. Laser Technology, 2011, 35(6): 725-733(in Chinese). [6] GUO Sh Y, HU X, YAN Zh A, et al. Research development of space-borne lidar in foreign countries[J]. Laser Technology, 2016, 40(5): 772-778(in Chinese). [7] LUO Y, HE Y, GENG L M, et al. Long-distance laser ranging lidar based on photon counting technology[J]. Chinese Journal of Lasers, 2016, 43(5): 0514001(in Chinses). doi: 10.3788/CJL [8] CLIFTON W E, STEELE B, NELSON G, et al. Medium altitude airborne Geiger-mode mapping lidar system[J]. Proceedings of the SPIE, 2015, 9465: 946506. [9] CHEN X Y, ZHAO G. Study on thermal stability characteristic of miniature conductive cooling repetitive(5pps) (Nd, Ce):YAG laser[J]. Laser Technology, 2001, 25(1): 63-66(in Chinese). [10] DONG J, LIU X Sh, SI H Y, et al. 350mJ LD side-pumped Q-swtiched Nd:YAG laser without water cooling[J]. Chinese Journal of Lasers, 2016, 43(11): 1101005(in Chinese). doi: 10.3788/CJL [11] LU Ch Y, LI L, LIU X, et al. Laser diode pumped passively Q-switched laser with corner-cube resonator[J]. Acta Optica Sinica, 2007, 27(7): 1228-1231(in Chinese). [12] GUO Y X, GONG M L, XUE H Zh, et al. Semi-circum ferential LD arrays symmetrically pumped solid state lasers[J]. Laser Technology, 2007, 31(1): 85-88(in Chinese). [13] CHEN X Y, JIN G Y, YU Y J, et al. Electro-optic Q-switched of double LDA alternate symmetric side pumped Nd:YAG laser[J]. Acta Optica Sinica, 2009, 29(11): 3098-3102(in Chinese). doi: 10.3788/AOS [14] YANG X T, MA X Zh, LIU Y. High-energy LD side-pumped Q-switched air cooling Nd:YAG laser[J]. Laser & Optoelectronics Progress, 2011, 48(11):111405(in Chinese). [15] BEZYAZYCHNAYA T V, BOGDANOVICH M V, GRIGOREV A V, et al. Transversally diode-pumped Q-switched Nd:YAG laser with improved power and spatial characteristics[J]. Optics Communications, 2013, 308(11): 26-29.