高级检索

光束参量积对半导体激光器光束质量的评估

杨孝敬, 焦清局, 王乙婷

杨孝敬, 焦清局, 王乙婷. 光束参量积对半导体激光器光束质量的评估[J]. 激光技术, 2018, 42(6): 859-861. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.025
引用本文: 杨孝敬, 焦清局, 王乙婷. 光束参量积对半导体激光器光束质量的评估[J]. 激光技术, 2018, 42(6): 859-861. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.025
YANG Xiaojing, JIAO Qingju, WANG Yiting. Evaluation of beam quality of semiconductor lasers by beam parameter product[J]. LASER TECHNOLOGY, 2018, 42(6): 859-861. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.025
Citation: YANG Xiaojing, JIAO Qingju, WANG Yiting. Evaluation of beam quality of semiconductor lasers by beam parameter product[J]. LASER TECHNOLOGY, 2018, 42(6): 859-861. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.025

光束参量积对半导体激光器光束质量的评估

基金项目: 

河南省科技攻关计划资助项目 132102210227

国家自然科学基金资助项目 61040010

国家语委科研规划资助项目 YB135-50

详细信息
    通讯作者:

    杨孝敬(1981-), 男, 博士, 讲师, 主要研究领域为激光技术、传感器非线性误差校正。E-mail:yangxj84@163.com

  • 中图分类号: TN248.4;TN202

Evaluation of beam quality of semiconductor lasers by beam parameter product

  • 摘要: 为了解决传统方法中用光束参量积来评估激光光束质量的不足,基于半导体激光器的光束特性,采用了光束参量积Mq2因子来评估半导体激光器光束质量,进行了理论分析和实验验证,取得了快轴准直焦距(FAC)分别为1100μm和600μm的各6个组合光束以及FAC为600μm的10个组合光束的有效焦距长度数据。结果表明,L//θ的变化越明显,光束质量参量积Mq2因子的变化越明显;测量值和计算值之间的误差小于5%。这一结果对高能激光的光束质量评估是有帮助的。
    Abstract: In order to solve the deficiency of the traditional evaluation method of beam parameter product on laser beam quality, based on the characteristics of semiconductor laser beam, the effective focal length data of 6 combined beams of fast axis collimator (FAC) with focal length 1100μm, 6 combined beams of FAC with focal length 600μm, and 10 combined beams of FAC with focal length 600μm were obtained. The theoretical analysis and experimental verification were carried out. The results show that the more obvious the change of L// and θ is, the more obvious the change of beam parameter product of beam quality is. The error between the measured value and the calculated value is generally less than 5%. This result is helpful for evaluating the beam quality of high energy laser.
  • Figure  1.   Simulation of stacking multilayer diode laser chip

    Table  1   Measurements and calculations for 6 combined beams using an 1100μm FAC (N=6, N//=1, As=0)

    parameter measurement calculation difference/%
    EFL of 100.1mm L/μm 149.0 138.6 6.1
    L///μm 811.0 801.4 7.2
    N·θ/mrad 6.2 6.2 0.1
    N//·θ///mrad 0.7 0.7 1.9
    Mq2/(mm·mrad) 7.8 7.8 0.4
    EFL of 49.8mm L/μm 81.3 69.8 9.1
    L///μm 382.6 402.6 2.9
    N·θ/mrad 12.4 9 0.2
    N//·θ///mrad 0.7 0.9 1.8
    Mq2/(mm·mrad) 15.4 14.3 4.1
    EFL of 8mm L/μm 12.9 12.4 14.1
    L///μm 59.4 59.8 0.9
    N·θ/mrad 71.3 70.5 0.2
    N//·θ///mrad 6.2 6.5 1.9
    Mq2/(mm·mrad) 89.7 79.6 8.1
    下载: 导出CSV

    Table  2   Measurements and calculations for 6 combined beams using a 600μm FAC (N=6, N//=1, As=0)

    parameter measurement calculation difference/%
    EFL of 100.1mm L/μm 301.1 284.3 4.1
    L///μm 698.9 785.6 6.3
    N·θ/mrad 2.9 3.2 1.1
    N//·θ///mrad 0.4 0.6 0.8
    Mq2/(mm·mrad) 3.1 3.1 2.1
    EFL of 49.8mm L/μm 151.2 142.6 5.2
    L///μm 402.4 412.7 4.1
    N·θ/mrad 5.9 5.9 1.3
    N//·θ///mrad 0.9 0.9 1.0
    Mq2/(mm·mrad) 4.8 4.6 2.9
    EFL of 8mm L/μm 12.9 19.9 2.9
    L///μm 62.7 63.5 0.9
    N·θ/mrad 40.1 39.4 1.3
    N//·θ///mrad 5.9 5.6 1.0
    Mq2/(mm·mrad) 29.8 26.8 4.2
    下载: 导出CSV

    Table  3   Measurements and calculations for 10 combined beams using a 600μm FAC (N=6, N//=1, As=0)

    parameter measurement calculation difference/%
    EFL of 100.1mm L/μm 286.2 259.2 4.1
    L///μm 741.9 769.3 4.9
    N·θ/mrad 9.1 7.9 0.3
    N//·θ///mrad 0.4 0.4 1.9
    Mq2/(mm·mrad) 22.6 22.6 0.2
    EFL of 49.8mm L/μm 139.7 129.5 6.1
    L///μm 402.4 421.1 3.9
    N·θ⊥/mrad 17.1 17.0 0.4
    N//·θ///mrad 0.8 0.8 1.9
    Mq2/(mm·mrad) 51.6 49.8 2.1
    EFL of 8mm L/μm 19.9 18.7 2.8
    L///μm 59.2 59.8 0.8
    N·θ/mrad 122.6 122.1 0.3
    N//·θ///mrad 5.8 5.3 1.9
    Mq2/(mm·mrad) 305.9 303.4 1.6
    下载: 导出CSV
  • [1]

    CAO Ch, WEBER H. The problem with M2[J]. Optics & Laser Technology, 2016, 32(8):221-224. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_06356e359b61d966288d66ec65e37076

    [2]

    GAO X, OHASHI H, OKAMOTO H. Beam-shaping technique for improving the beam quality of a high-power laser-diode stack[J]. Optics Letters, 2016, 31(12):1654-1656. http://www.ncbi.nlm.nih.gov/pubmed/16688251

    [3]

    SHAO N, ZHU X, ZHU G Zh, et al. Study on jet array impingement cooling for crystal module of thin disk laser[J]. Laser Technology, 2016, 40(5):695-701(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605016.htm

    [4]

    GUO H P, WAN Ch H, XU Ch W, et al. Study on dynamic mode stability of external cavity diode lasers. Laser Technology, 2016, 40(5):706-711(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605018.htm

    [5]

    BERND K, ANDREAS S. Multi-kW high brightness fiber coupled diode laser[J]. The International Society for Optical Engineering, 2013, 25(3):86050-86061. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0213868043/

    [6]

    LADED D. Epileptic seizure prediction and control[J]. IEEE Transactions on Biomedical Engineering, 2013, 50(5):549-558. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211600670/

    [7]

    GAO X, OHASHI H, OKAMOTO H. Beam-shaping technique for improving the beam quality of a high-power laser-diode stack[J]. Optics Letters, 2016, 31(6):1654-1656. http://www.ncbi.nlm.nih.gov/pubmed/16688251

    [8]

    DONG J X, LOU Q H, SU Zh P. Beam quality improvement of laser diode array by using off-axis external cavity[J]. Optics Express, 2015, 15(27):11776-11780. http://europepmc.org/abstract/MED/19547540

    [9]

    CAO Ch G, WANG X, ZENG X D. The problem with beam quality for semiconductor laser[J]. International Journal for Light and Electron Optics, 2016, 127(16):3701-3702. http://www.sciencedirect.com/science/article/pii/S0030402616000954

    [10]

    HAO Y, LIU Y, ANDREA B. Investigation of collimating and focusing lenes' impact on laser diode stack beam parameter product[J]. Applied Optics, 2015, 54(15):10240-10248. https://www.ncbi.nlm.nih.gov/pubmed/26836683

  • 期刊类型引用(11)

    1. 孟祥艳,张欣,张峰,赵黎,李帅. 融合迁移特征学习的生物启发网络用于可见光成像室内位置感知方法. 中国激光. 2023(10): 176-183 . 百度学术
    2. 赵黎,刘海涛,陈俊波. 基于采用天牛须搜索算法优化神经网络的可见光室内定位方法. 光通信技术. 2022(02): 1-7 . 百度学术
    3. 张慧颖,王凯,于海越,牟昊. 基于自适应Levy飞行的黄金正弦可见光定位研究. 激光技术. 2022(04): 519-524 . 本站查看
    4. 赵黎,韩中达,张峰. 基于神经网络的可见光室内立体定位研究. 中国激光. 2021(07): 145-154 . 百度学术
    5. 张雨桐,赵黎,张峰. 基于小波变换的可见光OFDM通信系统性能优化. 激光技术. 2020(02): 261-265 . 本站查看
    6. 宋素真,桂林,杨晨,郑艺璇,陈璟,朱玉绚. 可见光通信应用于安全支付有效区域的研究. 上海第二工业大学学报. 2020(03): 207-212 . 百度学术
    7. 陈立胜,于丽娜. 基于虚拟光学的室内三维空间视觉合理性设计. 激光杂志. 2020(11): 183-187 . 百度学术
    8. 陈怡然,廖宁. 基于激光图像处理技术的目标定位系统. 激光杂志. 2019(08): 77-80 . 百度学术
    9. 朱瑞晨,曹宇彤,索朝举,刘洋洋,刘伟伟. 基于LED可见光技术的室内车辆定位系统设计. 电脑知识与技术. 2019(22): 228-230 . 百度学术
    10. 左肖,邵建华,沈宏杰,安爽. 自然环境光下的室内可见光定位系统. 激光杂志. 2019(11): 7-11 . 百度学术
    11. 杨康,赵黎. 基于VLC和PLC的智慧照明系统. 激光杂志. 2019(12): 72-75 . 百度学术

    其他类型引用(8)

图(1)  /  表(3)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 19
出版历程
  • 收稿日期:  2017-12-02
  • 修回日期:  2018-03-19
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回