-
起初在硅靶前表面和后表面均产生了熔融喷溅物,由于熔融喷溅物速度不同而逐渐分离开,最后可观测到熔融喷溅物呈现液滴状;而铝靶产生的熔融喷溅物呈线状不透明流体,并且由于喷溅速度的不同而逐渐分离开。
在激光与靶材相互作用产生的熔融喷溅过程研究中,其可能产生熔融喷溅的机理有两种:(1)根据流体动力学,物质蒸气产生的气化压力使得熔融液体从材料表面向外喷溅[8];(2)根据热物理学理论,液-气相变过程中的过热沸腾同样可使得熔融液体从材料表面向外喷溅[10]。对于毫秒激光与铝靶相互作用,其熔融喷溅的机理应用流体力学理论[6, 11-12];而对于毫秒激光与硅靶相互作用的熔融喷溅机理未见报道,由于硅靶和铝靶的熔融喷溅现象存在诸多不同,因此考虑毫秒激光致硅靶产生过热沸腾现象。过热沸腾即体积气化,它的气化机制与面气化机制不同,主要是小气泡在过热液体中成核、长大、最后导致沸腾现象出现[13]。超过沸点的熔融硅液体内部形成小气泡,并且当小气泡膨胀至一定大小时带着周围的熔融液体离开硅靶表面,因此,在熔融喷溅过程中,熔融喷溅物呈现液滴状。而铝靶形成熔融喷溅的机理为物质蒸气产生的气化压力使得熔融液体从材料表面向外喷溅,在外力的作用下液体向离开靶材的方向移动,因此呈现线状分布。
-
硅靶产生的熔融喷溅方向与靶材前表面法线所成夹角最大值为45°;而铝靶产生的熔融喷溅方向与靶材前表面法线的夹角较小,约为20°。对于硅靶而言,当熔融喷溅现象出现时,气泡自身产生的气化压力要大于外力,气泡必然向外力最小的方向运动[14]。在激光作用区域,硅靶的径向温度逐渐降低,而气化饱和蒸气压随温度的降低而减小[13],因而,在径向上气化饱和蒸气压强是逐渐减小的。在激光作用区域的边缘附近,在自身产生的气化压力、气化饱和蒸气压力和固-液交界面的共同限制下,融熔喷溅物以一定角度离开靶材。实验中,熔融喷溅的角度最大值大约为45°。而对于铝靶而言,其融熔喷溅方向主要是熔融液体受到外力的合力方向,这其中包括气化蒸汽压力、表面张力等作用力[6],在实验中,靶产生的熔融喷溅方向与靶材前表面法线的夹角大约为20°。
-
硅靶产生熔融喷溅物分布在两个最大喷溅角之间,铝靶产生的熔融喷溅物在空间呈线状分布在喷溅方向所在的直线周围。对于硅靶而言,过热沸腾过程中产生的气泡是服从Boltzmann[15]分布的,在这种分布下,小气泡布满在激光作用区域,在自身产生的气化压力,周围气泡压力和硅靶表面饱和蒸汽压力的共同作用下形成液态喷溅。因此,在实验中看到融熔喷溅物分布在两个最大喷溅角之间。而对于铝靶而言,熔融液体受到合力的方向确定以后,其融熔喷溅方向也确定,因此,铝靶产生的熔融喷溅物在空间呈线状分布在喷溅方向所在的直线周围。
-
硅靶产生熔融喷溅物的亮度高于背景光,而铝靶产生的熔融喷溅物亮度低于背景光。由于实验所用的高速CCD前放置了波长为532nm的带通干涉滤波片,因而高速CCD记录的主要是波长为532nm±15nm光波。在实验中,硅靶产生的融熔喷溅物的亮度高于背景光,因此高温融熔液体硅存在热辐射现象。这里假设将发生过热沸腾现象,即融熔液体的温度要超过其沸点,而硅的沸点温度为3514K,在计算中假定熔融喷溅物的温度为3500K,根据黑体辐射辐射强度的定义和液态硅的发射率ε=0.27[16],温度为3500K的液态硅在带通干涉滤光片透光波段517nm~547nm的辐射强度为:
$ \begin{align} &E=\varepsilon {{E}_{\text{b}}}=\varepsilon \int_{517}^{547}{\frac{3.742\times {{10}^{-16}}}{{{\lambda }^{5}}\left[\text{exp}\left( \frac{1.439\times {{10}^{-2}}}{~\lambda \times 3500} \right)-1\text{ } \right]}}\text{d}\lambda = \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3.132\text{W/c}{{\text{m}}^{2}} \\ \end{align} $
(1) 式中,λ是波长,Eb表示黑体辐射强度。实验中使用波长为532nm的连续激光器,输出功率500mW,半径为2cm,对应背景光辐射强度为:
$ {{I}_{\text{b}}}=\frac{0.5}{\text{ }\!\!\pi\!\!\text{ }\times {{2}^{2}}}~=0.398\text{W}/\text{c}{{\text{m}}^{2}} $
(2) 由以上计算结果可见,液态硅在517nm~547nm波段的辐射强度约为背景光源的78.7(M=E/Ib=78.7)倍。可见,高温液态硅辐射光强度远高于背景光,由此可推知在毫秒激光作用下硅的熔融液体温度高于其沸点温度。而对于铝靶而言,毫秒激光的能量密度大于铝靶的熔融喷溅阈值[6],整个熔融层的液体在气化压力的作用下离开铝靶表面。由于发射率和吸收率近似相等[17],而液态铝对波长532nm的吸收率为0.25[18]。根据黑体辐射辐射强度的定义和背景光的强度,融熔液态铝辐射的光强度和背景光相等时,融熔铝的温度为2250K。铝靶的熔点为933K,温度为933K~2250K的融熔铝离开靶材时,其亮度低于背景光。因此,在实验中,观察到的熔融喷溅物的亮度低于背景光,即毫秒激光作用下铝的熔融液体温度低于其沸点温度。
毫秒激光致固体靶材熔融喷溅的比较实验研究
Comparative experimental research of molten liquid ejection from soild targets induced by millsecond pulse laser
-
摘要: 为了研究毫秒激光致硅靶的熔融喷溅机理,采用阴影法,通过高速CCD获得了毫秒激光与固体靶材(硅靶和铝靶)相互作用的序列阴影图,研究了毫秒激光致固体靶材的融熔喷溅过程。实验上对比了毫秒激光致硅靶和铝靶熔融喷溅过程的不同,并对毫秒激光致固体熔融喷溅形成的机制进行了讨论。根据两种靶材融熔喷溅机理不同,解释了两种靶材融熔喷溅物的形貌、喷溅角度、喷溅物分布和喷溅物亮度不同的原因。结果表明,毫秒激光对两种靶材均能产生气化和熔融喷溅过程,但气化强度和熔融喷溅物的形态、亮度均不相同;激光作用硅靶时,作用区域所产生的气化现象不明显,熔融喷溅物呈液滴状,其亮度强于背景光,熔融喷溅方向与靶材前表面法线所成角的最大值为45°,熔融喷溅物分布在其间;而激光作用铝靶时,作用区域的铝靶所产生的气化现象更加明显,熔融喷溅物呈线状不透明流体,其亮度低于背景光,熔融喷溅方向与靶材前表面法线所成角度为20°,熔融喷溅物分布在熔融喷溅方向所在的直线周围。该研究对激光加工技术是有帮助的。Abstract: In order to study molten liquid ejection mechanism induced by interaction between millisecond laser and silicon targets, based on the so-called shadow method, the process of molten liquid ejection was studied after the sequence shading pictures of the interaction between the millisecond laser and the solid targets (silicon and aluminum) were recorded by high speed CCD. The difference between melting and splashing process of silicon and aluminum targets caused by millisecond laser was compared. The mechanism of solid melting splashing formed by millisecond laser was also discussed. According to the different melting and splashing mechanism of the two targets, the reasons of splashing angle, splash distribution and splash brightness of two targets were explained. The results show that, millisecond laser can produce gasification and melting spatter process for both targets, but gasification intensity, shape and brightness of the melted splash are different. When interacting with silicon targets, the gasification phenomenon is not obvious in the action area. The molten splash is liquid drop. Its brightness is stronger than the background. The maximum angle between the splashing direction and the normal line of the front target surface is 45°, and the molten spatter is distributed within the angle. When interacting with aluminum targets, gasification phenomenon is more obvious in the action area. The molten splash is linear opaque fluid. Its brightness is lower than the background light. The angle between the splashing direction and the normal line of the front target surface is 20°. The molten spatter is distributed along the line of splashing direction. The study is helpful for laser processing technology.
-
Key words:
- laser physics /
- molten liquid ejection /
- shadow methods /
- gasification /
- millsecond laser
-
-
[1] LIU Q B. Laser processing technology and its application[M]. Beijing:Metallurgical Industry Press, 2007:4-6(in Chinese). [2] ZANG Y N, NI X W, HAN B. The ejection of molten aluminum after the interaction with millisecond pulsed laser[J]. Journal of Optics, 2017, 46(3):231-240. doi: 10.1007/s12596-017-0402-5 [3] WEI Z, ZHANG W, WANG D, et al. Structural, optical and electrical behavior of millisecond pulse laser damaged silicon-based positive intrinsic negative photodiode[J]. Optik-International Journal for Light and Electron Optics, 2017, 131(sC):110-115. [4] JIA Zh X, HUANG J G, GAO J Q, et al. Technological study on long pulse laser cutting of polycrystalline cubic boron nitride[J]. Laser Technology, 2017, 41(3):346-350(in Chinese). [5] SCHNEIDER M, BERTHE L, FABBRO R, et al. Gas investigation for laser drilling[J]. Journal of Laser Applications, 2007, 19(3):165-169. doi: 10.2351/1.2567844 [6] ZANG Y N, NI X W, HAN B. The ejection threshold of molten aluminum induced by millisecond pulsed laser[J]. Journal of Applied Physics, 2014, 116(1):013104. doi: 10.1063/1.4887073 [7] HE X L, DEBROY T, FUERSCHBACH P W. Alloying element vaporization during laser spot welding of stainless steel[J]. Journal of Physics, 2003, D36(23):3079-3088. [8] HE X L, NORRIS J, FUERSCHBACH P, et al. Liquid metal expulsion during laser spot welding of 304 stainless steel[J]. Journal of Physics, 2006, D39(3):525-534. [9] SEMAK V, MATSUNAWA A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics, 1997, D30(18):2541-2552. [10] KELLY R, MIOTELLO A. Comments on explosive mechanisms of laser sputtering[J]. Applied Surface Science, 1996, 96:205-215. [11] CHO J H, NA S J. Implementation of real time multiple reflection and Fresnel absorption of laser beam in keyhole[J]. Journal of Physics, 2006, D39(24):5372-5378. [12] ZHANG Y M, SHEN Zh H, NI X W. Modeling and simulation on long pulse laser drilling processing[J]. International Journal of Heat and Mass Transfer, 2014, 73:429-437. doi: 10.1016/j.ijheatmasstransfer.2014.02.037 [13] LU Q M, MAO S S, MAO X L, et al. Theory analysis of wavelength dependence of laser-induced phase explosion of silicon[J]. Journal of Applied Physics, 2008, 104(8):083301. doi: 10.1063/1.2978369 [14] LU Zh Q. Two-phase flow and boiling heat transfer[M]. Beijing:Tsinghua University Press, 2002:146-158(in Chinese). [15] XU J Y, JIA D N. The boiling heat transfer and gas-liquid two phase flow[M]. Beijing:Atomic Energy Press, 2001:201-233(in Chinese). [16] TAKASUKA E, TOKIZAKI E, TERASHIMA K, et al. Emissivity of liquid silicon in visible and infrared regions[J]. Journal of Applied Physics, 1997, 81(9):6384-6384. doi: 10.1063/1.364418 [17] HIRANO K, FABBRO R, MULLER M. Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure[J]. Journal of Physics, 2011, D44(43):435402. [18] MOSTOVYCH A N, CHAN Y. Reflective probing of the electrical conductivity of hot aluminum in the solid, liquid, and plasma phases[J]. Physical Review Letters, 1997, 79(25):5094-5097. doi: 10.1103/PhysRevLett.79.5094