-
激光等离子体的产生、扩散以及自身的特征都会对基底表面的微粒产生作用,直接影响到去除效果。可以说,微粒去除的物理过程与激光等离子体的特征密不可分,下面进行详细的理论分析。
-
空气带隙很宽,对激光透过率极高,但是当激光脉冲强度达到一定程度时,空气几乎变得不透明,这是由于多光子电离击穿效应使得辐射区域自由电子密度增加。
击穿电离产生的自由电子有两个主要过程:第一过程是多光子电离,主要是基于多光子电离效应使得空气的自由电子密度得到少量增加,这些自由电子可以作为种子电子为后续大量自由电子的产生奠定基础[9];第二过程是自由电子密度增加到一定程度时,通过逆韧致吸收效应对后续激光脉冲能量进行强烈的吸收,从而使得自由电子密度得到极大的增长,这是雪崩电离阶段。在这个过程中,空气的自由电子密度高达1013cm-3[9],大部分激光脉冲能量被吸收沉积,透过量极少[7-8]。如此高密度的等离子体在短时间内集中沉积了大部分的激光脉冲能量,所以具备了高温高压特性。
-
由图 4所示,辐射光谱有两部分组成:连续光谱和线状光谱,所表征的物理过程各不相同[10-11]。连续光谱辐射主要是出于电离态的高能自由电子向低能自由态跃迁所发射的光谱,这种辐射称之为韧致辐射。叠加其上是线状光谱辐射,是元素特定能级的跃迁,属于元素复合跃迁发射的光谱,可以明显观测到空气中O和N元素的辐射谱线。
-
激光等离子体可以看作是激光与微粒之间的热量传输中介,可以有效地将激光脉冲能量传递给微粒。微粒和基底的材料不同、形状和大小不同,会引起对等离子体辐照的吸收也不同,进而产生不同的温差和相应的膨胀应力差,这就会使得微粒与基底更易于分离[12-14]。
-
激光脉冲首先在焦点处将空气击穿产生激光等离子体,随后在逆韧致吸收作用下,激光等离子体对后续激光脉冲能量进行强烈吸收,从而导致激光脉冲能量的集中沉积;同时,激光等离子体的高温特性会促使其迅速向外膨胀,形成高压冲击波;冲击波以焦点为中心向外扩散,最终形成球状爆炸波。以点爆炸模型进行分析,当把激光等离子体视为自由理想气体、忽略辐射损耗时,可以得到激光等离子体冲击波的膨胀速度与压强的关系,如下式所示[15]:
$ R\left( t \right) = A{\left( {\frac{Q}{{{\rho _0}}}} \right)^{\frac{1}{5}}}{t^{\frac{2}{5}}} $
(1) $ u\left( t \right) = \frac{2}{5}A{\left( {\frac{Q}{{{\rho _0}}}} \right)^{\frac{1}{5}}}{t^{ - \frac{3}{5}}} $
(2) $ {p_1}\left( r \right) = \frac{{{\rho _0}{u^2}\left( r \right)}}{{\gamma + 1}} $
(3) 式中,下标1表示波前;Q为激光脉冲的能量沉积量;t为扩散时间;R(t)是扩散时间为t时的冲击波半径;A为空气常数,近似值0.98;ρ0为激光等离子体的密度;u(t)是扩散时间为t时的冲击波波速率;p1(r)是冲击波压强;r是入射激光光束的半径;u(r)是入射激光光束半径r处的冲击波波速率;γ表示绝热系数。为将等离子体视为理想气体时,可取ρ0=1.3kg·m-3,。激光等离子体对激光的吸收率取85%[16]。根据(1)式和(2)式可以分析冲击波半径随时间的变化规律,取冲击波的时间间隔为20ns,可以得到冲击波波前的膨胀随时间的变化规律,如图 5所示。
由图 5可见,冲击波的波前半径会随着时间向外扩散,但在单位时间内的扩散距离越来越短,这说明扩散速度逐渐变慢,也表明冲击波的快速扩散主要在初始阶段。根据(3)式可以得到冲击波压强的径向空间分布,如图 6所示。
由图 6可见,冲击波压强沿径向迅速减小,在距焦点半径小于1mm的范围内处于GPa量级,在小于400μm的范围则会高于1GPa。通常,对典型纳米微粒的去除力应在几十千帕左右[17]。实验表明,在聚焦到硅表面小于2mm范围内都可以有效去除微粒。但当焦点与硅表面距离在小于0.2mm范围内时,冲击波压强达到几十吉帕,这已远远超出了基底的抗冲击能力,使基底发生破碎和断裂[18]。因此,控制焦点与硅基底表面的有效距离也是去除元件表面杂质微粒的关键问题之一。
综上可见,微粒的有效去除是激光等离子体综合作用的结果,其中微粒对激光等离子体的辐射光吸收而引起的热膨胀效应,会在微粒与基底之间产生应力差,使微粒更易于去除。但这种应力差一般会小于微粒与基底之间黏附力(范德华力),且应力消失后,微粒依然附着在基底上,所以很难实现有效去除[19-20]。而在等离子体冲击波的作用下,微粒则可以实现与基底的有效剥离,从达到清洗基底的目的[21-22]。故激光等离子体冲击波效应才是微粒去除的主要原因。
激光等离子体对硅表面微纳粒子除去机理研究
Study on removal mechanism of micro-/nano-particles on silicon surface by laser plasma
-
摘要: 激光等离子体对精密元件表面微纳米粒子的有效去除,在纳米科研领域中有很大的应用潜力。为了深入研究激光等离子体对微粒的去除机理和条件,采用纳秒脉冲激光等离子体,对硅基底表面的微纳米粒子进行去除实验,观测了微粒的去除效果,并理论分析了等离子体的作用效应。结果表明,等离子体向外辐射宽谱光,紫外短波部分加速周围空气电离,使等离子体体积剧增,并有效提升基底和粒子温度;基底与粒子两者热膨胀度不同,使粒子更易于从基底剥离;同时等离子体向周围膨胀扩散形成高压冲击波,冲击波的压强高达GPa量级,可以克服微粒与基底之间的范德华力,而去除微纳米粒子,尤其对粒径大于0.5μm的去除效果尤其明显;在实际去除过程中,等离子体与基底的距离应该保持在0.2mm~2mm之间,这样既保证了微粒的有效去除,又不会造成基底的损伤。激光等离子体对微粒的去除效果明显,是等离子体辐射效应和冲击波效应的综合作用的结果。Abstract: Laser-induced plasma has shown increasing potential in removing micro-/nano-particles stuck onto the surface of precise components in nano-science and nano-technology. In order to study the removal mechanism of the micro-/nano-particles, silicon surfaces were cleaned by means of nanosecond laser plasma, during which the removal results was observed and then the optimized conditions for laser plasma to flush the silicon surface was recommended. The results show that plasma radiates out wide-spectrum light, whose ultraviolet short wave accelerates the ionization of surrounding air, increases the volume of plasma and increase the temperature of base and particle effectively. Because of thermal expansion difference between the base and particles, the particles are peeled from the base easily. At the same time, the high pressure shock waves up to GPa are formed resulting from the expansion and diffusion of plasma to the surrounding area. It can overcome van Edward force between the particles and the substrate and remove the micro-/nano-particles. Especially, the removal effect of the particle size larger than 0.5μm is more obvious. During the actual removal process, the distance from the plasma to the base should be between 0.2mm and 2mm. The distance can ensure the effective removal of the particles and cause no damage to the base. The effect of laser plasma on the removal of particles is obvious and it is the combined effect of the radiation effect and the shock wave effect of the plasma.
-
Key words:
- laser technique /
- laser-induced plasma /
- radiation spectrum /
- micro-/nano-particle /
- surface cleaning
-
-
[1] NG D, HUANG P Y, JENG Y R, et al. Nanoparticle removal mechanisms during post-CMP cleaning[J]. Electrochemical and Solid-State Letters, 2007, 10(8):H227-H231. doi: 10.1149/1.2739817 [2] ANDREEV V A, FREER E M, de LARIOS J M, et al. Silicon-wafer cleaning with aqueous surfactant-stabilized gas/solids suspensions[J]. Journal of the Electrochemical Society, 2011, 158(1):H55-H62. doi: 10.1149/1.3503572 [3] TSUNEMI A, HAGIWARA K, SAITO N, et al. Complete removal of paint from metal surface by ablation with a TEA CO2 laser[J]. Applied Physics, 1996, A63(5):435-439. [4] VARGHESE I, CETINKAYA C. Non-contact removal of 60nm latex particles from silicon wafers with laser-induced plasma[J]. Journal of Adhesion Science and Technology, 2004, 18(7):795-806. doi: 10.1163/156856104840327 [5] KRUUSING A. Underwater and water-assisted laser processing:part 1-general features, steam cleaning and shock processing[J]. Optics and Lasers in Engineering, 2004, 41(2):307-327. doi: 10.1016/S0143-8166(02)00142-2 [6] CETINKAYA C, PERI M D M. Non-contact nanoparticle removal with laser induced plasma pulses[J]. Nanotechnology, 2004, 15(5):435-440. doi: 10.1088/0957-4484/15/5/006 [7] COHN D R, HACKER M P, LAX B, et al. Effects of pressure and magnetic field upon physical processes in laser-induced gas breakdown[J]. Journal of Applied Physics, 1975, 46(2):668-675. doi: 10.1063/1.321683 [8] KHAN F S, DAVIES J H, WILKINS J W. Quantum transport equations for high electric fields[J]. Physical Review, 1987, B36(36):2578-2597. [9] MORGAN C G. Laser-induced breakdown of gases[J]. Reports on Progress in Physics, 1975, 38(5):621-665. doi: 10.1088/0034-4885/38/5/002 [10] CORDE S, PHUOC K T, LAMBERT G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1):1-58. [11] LIU W, BERNHARDT J, THéBERGE F, et al. Spectroscopic characterization of femtosecond laser filament in argon gas[J]. Journal of Applied Physics, 2007, 102(3):033111. doi: 10.1063/1.2759887 [12] ALLAZADEH M R, BALÁZSI C. Reinforced Aluminum matrix composite application in friction material[J]. Recent Patents on Corrosion Science, 2013, 3(1):39-46. doi: 10.2174/22106839112029990006 [13] CASATI R, VEDANI M. Metal matrix composites reinforced by nano-particles-a review[J]. Metals, 2014, 4(1):65-83. doi: 10.3390/met4010065 [14] ALEEM S A E, HEIKAL M, MORSI W M. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica[J]. Construction and Building Materials, 2014, 59(59):151-160. [15] SALLEO A. High-power laser damage in fused silica[D]. Berkeley, California, USA: University of California, 2001: 105. [16] TUNNA L, KEARNS A, O'NEILL W, et al. Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355nm wavelengths[J]. Optics & Laser Technology, 2001, 33(3):135-143. [17] ISRAELACHVILI J N. Intermolecular and surface forces:second edition[M].Burlington, MA, USA:Academic Press, 1991, 2(3):59-65. [18] HEMLEY R J, MAO H K, BELL P M, et al. Raman spectroscopy of SiO2 glass at high pressure[J]. Physical Review Letters, 1986, 57(6):747-750. doi: 10.1103/PhysRevLett.57.747 [19] KIM D, OH B, JANG D, et al. Experimental and theoretical analysis of the laser shock cleaning process for nanoscale particle removal[J]. Applied Surface Science, 2007, 253(19):8322-8327. doi: 10.1016/j.apsusc.2007.02.119 [20] WANG Z M, ZENG X Y, HUANG W L. Status and prospect of laser cleaning procedure[J].Laser Technology, 2000, 24(2):68-73(in Chinese). [21] VANDERWOOD R, CETINKAYA C. Nanoparticle removal from trenches and pinholes with pulsed-laser induced plasma and shock waves[J]. Journal of Adhesion Science and Technology, 2003, 17(1):129-147. doi: 10.1163/15685610360472484 [22] CHEN J F, ZHANG Y K, XU R J, et al. Experimental research of paint removement with a fast axis flow CO2 laser[J]. Laser Technology, 2008, 32(1):64-66(in Chinese).