-
在荧光分析时,扫描k个样品的3维荧光光谱可构成一个大小为I×J×K的3维荧光矩阵,三线性模型如下[17]:
$ \mathit{\boldsymbol{X}} = \sum\limits_{n = 1}^N {{\mathit{\boldsymbol{a}}_k} \otimes {\mathit{\boldsymbol{b}}_k} \otimes {\mathit{\boldsymbol{c}}_k} + \mathit{\boldsymbol{E}}} $
(1) 式中, N代表组分数,即有荧光贡献的成分数;⊗为张量积;ak代表组分k的激发光谱矩阵;bk代表组分k的发射光谱矩阵;ck代表组分k的体积分数矩阵;E代表测量误差的大小为I×J×K的3维残差矩阵。
-
交替拟合残差算法(alternating fitting residue algorithm, AFR)基于三线性模型的循环对称性来获得新的残差,并在此基础上得到3个目标函数[18]:
$ \begin{array}{c} S(\mathit{\boldsymbol{C}}) = \sum\limits_{i = 1}^I {\left\| {\mathit{\boldsymbol{B}}{^ + }{\mathit{\boldsymbol{X}}_{i \ldots }} - {\mathit{\boldsymbol{B}}^ + }\;\mathit{\boldsymbol{B}}{\rm{diag}}\left( {{\mathit{\boldsymbol{a}}_i}} \right){\mathit{\boldsymbol{C}}^{\rm{T}}}} \right\|_F^2 + } \\ p\sum\limits_{j = 1}^J {\left\| {{\mathit{\boldsymbol{X}}_{ \ldots j \ldots }}{{({\mathit{\boldsymbol{A}}^{\rm{T}}})}^ + } - {\rm{ }}\mathit{\boldsymbol{C}}{\rm{diag}}({\mathit{\boldsymbol{b}}_j}){\mathit{\boldsymbol{A}}^{\rm{T}}}{{({\mathit{\boldsymbol{A}}^{\rm{T}}})}^ + }} \right\|_F^2} \end{array} $
(2) $ \begin{array}{c} S\left( \mathit{\boldsymbol{A}} \right) = \sum\limits_{j = 1}^J {\left\| {{\rm{ }}\mathit{\boldsymbol{C}}{^ + }\mathit{\boldsymbol{X}}{_{ \ldots j \ldots }} - \mathit{\boldsymbol{C}}{^ + }\;\mathit{\boldsymbol{C}}{\rm{diag}}({\mathit{\boldsymbol{b}}_j}){\mathit{\boldsymbol{A}}^{\rm{T}}}} \right\|_F^2 + } \\ q\sum\limits_{k = 1}^K {\left\| {{\mathit{\boldsymbol{X}}_{ \ldots k}}{{({\mathit{\boldsymbol{B}}^{\rm{T}}})}^ + }{\rm{ }} - \mathit{\boldsymbol{A}}{\rm{diag}}({\mathit{\boldsymbol{c}}_k}){\mathit{\boldsymbol{B}}^{\rm{T}}}{{({\mathit{\boldsymbol{B}}^{\rm{T}}})}^ + }} \right\|_F^2} \end{array} $
(3) $ \begin{array}{c} S\left( \mathit{\boldsymbol{B}} \right) = \sum\limits_{k = 1}^K {\left\| {{\mathit{\boldsymbol{A}}^ + }\;{\mathit{\boldsymbol{X}}_{ \ldots k}} - {\mathit{\boldsymbol{A}}^ + }\;\mathit{\boldsymbol{A}}{\rm{diag}}({\mathit{\boldsymbol{c}}_k}){\mathit{\boldsymbol{B}}^{\rm{T}}}} \right\|_F^2 + } \\ r\sum\limits_{i = 1}^I {\left\| {{\mathit{\boldsymbol{X}}_{i \ldots }}{{({\mathit{\boldsymbol{C}}^{\rm{T}}})}^ + } - \mathit{\boldsymbol{B}}{\rm{diag}}({\mathit{\boldsymbol{a}}_i}){\mathit{\boldsymbol{C}}^{\rm{T}}}{{({\mathit{\boldsymbol{C}}^{\rm{T}}})}^ + }} \right\|_F^2} \end{array} $
(4) 式中, p, q, r为拟合因子,一般情况下选p=q=r=1;上标T表示转置,+表示共轭转置,F表示矩阵范数; A, B, C为因子载荷矩阵。再使用交替最小化上述目标函数来进行分解,即据(1)式通过初始值A, B求C;同理通过B, C求A;通过A, C求B,最终使得残差矩阵可以收敛。
-
实验仪器:英国Edinburgh FLS920P型稳态和时间分辨荧光光谱仪、移液器、酒精计。
实验样品:某酒厂提供的某浓香型年份白酒样品,分别为1999年、2004年、2009年、2011年、2012年生产。乙酸由国家标准物质研究中心提供的分析纯,乙醇为SIGEMA公司购买的分析纯,水为超纯水。
参量设置:激发波长的测量范围为460nm~500nm,步长2nm。发射波长的测量范围为514nm~550nm,步长为2nm,激发和发射狭缝宽度分别设置为5nm,积分时间设置为0.1s。
-
使用酒精计测得白酒年份酒样品酒精度为68°,使用乙酸和体积分数为0.68的乙醇水溶液配制成乙酸乙醇水溶液,乙酸的体积分数范围为0.0000~0.005,体积分数间隔为0.0005,共计11个样本作为校正集,编号为1~11,如表 1所示。扫描其3维荧光光谱,使用AFR算法结合留一交互验证法预测乙酸体积分数来检验算法的有效性与校正集的可靠性。
Table 1. The concentration of calibration
calibration sample volume fraction of acetic acid 1 0.0050 2 0.0045 3 0.0040 4 0.0035 5 0.0030 6 0.0025 7 0.0020 8 0.0015 9 0.0010 10 0.0005 11 0.0000 将5个年份的酒样作为预测集,不做任何预处理, 按照年份由高到低编号为1~5。使用FLS920P荧光光谱仪测定上述样本的3维荧光光谱并使用AFR算法预测其乙酸的体积分数。
最后使用标准添加法来验证预测结果的准确性。
-
使用AFR算法分解得到乙酸在乙醇水溶液中的激发光谱与发射光谱,如图 1所示。对校正集进行留一交互验证的结果如表 2所示。表中,RMSEP为预测均方根误差(root mean square erroor of prediction)。
Figure 1. The spectra of acetic acid in ethanol aqueous solution obtained by AFR algorithm and experiment
Table 2. Analysis of calibration set by using AFR algorithm and leave-one-out cross-validation method
samplenumber the realvolume fraction the predicted volume fraction recoverypercentage/% 1 0.00500 0.00496 99.20 2 0.00450 0.00467 103.78 3 0.00400 0.00405 101.25 4 0.00350 0.00334 95.43 5 0.00300 0.00278 92.67 6 0.00250 0.00254 101.60 7 0.00200 0.00212 106.00 8 0.00150 0.00155 103.33 9 0.00100 0.00099 99.00 10 0.00050 0.00059 118.00 11 0.00000 -0.00009 — RMSEP 0.00162 average recovery percentage 102.03% correlation coefficient 0.9974 可以看出, 通过AFR算法分解出的乙酸在乙醇水溶液中的荧光激发与发射光谱与实验得到的乙酸在乙醇水溶液中的荧光光谱基本吻合,如图 1所示;同时使用AFR算法对校正集样本进行留一交互验证,预测体积分数与真实体积分数的相关系数为0.9974,预测均方根误差值为0.00162,平均回收率为102.03%,说明AFR算法可以有效地预测乙醇水溶液中乙酸的体积分数,并且配制的校正集是可靠且稳定的。
从上述结果可以看出,使用3维荧光光谱结合AFR算法可以对乙醇水溶液中乙酸的体积分数得到较好的预测结果,也对下一步预测白酒年份酒中乙酸的体积分数提供了技术帮助。
-
测定5个不同年份的白酒的3维荧光光谱,样品编号为1~5,将它们做为预测集,11个不同体积分数的乙酸乙醇水溶液作为校正集,再使用AFR算法进行解析,解析出的荧光激发与发射光谱如图 2所示。预测的白酒年份酒中己酸体积分数如表 3所示。
Figure 2. The spectra of acetic acid in Chinese aged liquor obtained by AFR algorithm and in ethanol aqueous solution obtained by experiment
Table 3. The predicted concentration of acetic acid in Chinese aged liquor by using AFR
sample number the predicted volume fraction 1 0.00089 2 0.00119 3 0.00186 4 0.00276 5 0.00383 由图 2可以看出,AFR算法分解出的白酒中乙酸的荧光激发与发射光谱与实验得到的乙酸在乙醇水溶液中的激发与发射光谱基本吻合,AFR算法预测白酒中乙酸的体积分数是可靠的,由表 3中得到预测的体积分数从编号1~5分别为0.00089,0.00119,0.00186,0.00276,0.00383。
-
以2009年的样品白酒为例,向其中添加不同体积分数的乙酸,使用FLS920光谱仪测量其3维荧光光谱,将其作为预测集并结合AFR算法进行光谱分解,预测体积分数及回收率见表 4。
Table 4. Analysis of the predicted set by using AFR
sample number the real volume fraction the predictedvolume fraction recovery percentage/% Ⅰ 0.00165 0.00155 93.94 Ⅱ 0.00184 0.00182 98.91 Ⅲ 0.00205 0.00217 105.85 Ⅳ 0.00246 0.00252 102.44 Ⅴ 0.00264 0.00287 108.71 RMSEP 0.00045 average recovery percentage 101.97% correlation coefficient 0.9926 根据表 3得知, 2009年白酒样品中乙酸体积分数为0.00119。向Ⅰ~Ⅴ号样品分别加入不同体积分数的乙酸, 使酒中乙酸体积分数变为0.00165,0.00184,0.00205,0.00246,0.00264,将1~5号样品作为预测集,使用AFR算法进行解析,得到预测体积分数为0.00155,0.00182,0.00217,0.00252,0.00287,得到预测体积分数与真实体积分数的相关系数为0.9926,平均回收率为101.97%,RMSEP为0.00045。同时对其它4个年份酒样本进行标准添加法并使用AFR算法预测体积分数,得到1号、3号、4号、5号年份酒样本的平均回收率分别为103.82%, 103.72%, 102.59%, 102.08%,预测体积分数与真实体积分数的相关系数分别为0.9891, 0.9971, 0.9964, 0.9978。以上结果表明:使用AFR算法预测的白酒年份酒中乙酸体积分数是准确有效的。
3维荧光光谱测定白酒年份酒中乙酸的体积分数
Determination of volume fraction of acetic acid in Chinese aged liquor by 3-D fluorescence spectrometry
-
摘要: 为了快速测定白酒年份酒中乙酸的体积分数,采用3维荧光光谱结合交替拟合残差算法,首先将不同体积分数的乙酸乙醇水溶液的3维荧光光谱作为校正集,然后将白酒的3维荧光光谱作为预测集,利用交替拟合残差算法进行解析分辨,采用标准添加法来验证结果的准确性。结果表明,预测体积分数与真实体积分数的相关系数为0.9926,平均回收率为101.97%;3维荧光光谱结合交替拟合残差算法可以快速有效地测定白酒年份酒中乙酸的体积分数。这一结果对白酒年份酒中单体体积分数的检测是有帮助的。Abstract: In order to quickly determine the volume fraction of acetic acid in Chinese aged liquor, 3-D fluorescence spectroscopy and alternate fitting residual algorithm were used. Firstly, 3-D fluorescence spectra of different volume fraction of acetic acid of ethanol aqueous solution was used as the calibration set. 3-D fluorescence spectrum of liquor was used as the predicted set. Alternate fitting residual algorithm was used to analyze. Standard addition method was used to verify the accuracy of the results. Through theoretical analysis and experimental verification, the results show that, correlation coefficient between the predicted volume fraction and the experimental volume fraction is 0.9926. Average recovery percentage is 101.97%. 3-D fluorescence spectrometry combined with alternate fitting residual algorithm can quickly and effectively determine the volume fraction of acetic acid in Chinese aged liquor. This result is helpful for the detection of monomer volume fraction in Chinese aged liquor.
-
Table 1. The concentration of calibration
calibration sample volume fraction of acetic acid 1 0.0050 2 0.0045 3 0.0040 4 0.0035 5 0.0030 6 0.0025 7 0.0020 8 0.0015 9 0.0010 10 0.0005 11 0.0000 Table 2. Analysis of calibration set by using AFR algorithm and leave-one-out cross-validation method
samplenumber the realvolume fraction the predicted volume fraction recoverypercentage/% 1 0.00500 0.00496 99.20 2 0.00450 0.00467 103.78 3 0.00400 0.00405 101.25 4 0.00350 0.00334 95.43 5 0.00300 0.00278 92.67 6 0.00250 0.00254 101.60 7 0.00200 0.00212 106.00 8 0.00150 0.00155 103.33 9 0.00100 0.00099 99.00 10 0.00050 0.00059 118.00 11 0.00000 -0.00009 — RMSEP 0.00162 average recovery percentage 102.03% correlation coefficient 0.9974 Table 3. The predicted concentration of acetic acid in Chinese aged liquor by using AFR
sample number the predicted volume fraction 1 0.00089 2 0.00119 3 0.00186 4 0.00276 5 0.00383 Table 4. Analysis of the predicted set by using AFR
sample number the real volume fraction the predictedvolume fraction recovery percentage/% Ⅰ 0.00165 0.00155 93.94 Ⅱ 0.00184 0.00182 98.91 Ⅲ 0.00205 0.00217 105.85 Ⅳ 0.00246 0.00252 102.44 Ⅴ 0.00264 0.00287 108.71 RMSEP 0.00045 average recovery percentage 101.97% correlation coefficient 0.9926 -
[1] ZHU S, LU X, JI K, et al.Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry[J]. Analytica Chimica Acta, 2007, 597(2):340-348. doi: 10.1016/j.aca.2007.07.007 [2] ZHU W H, CHEN G Q, ZHU Zh W, et al. Year prediction of a mild aroma Chinese liquors based on fluorescence spectra and simulated annealing algorithm[J]. Measurement, 2017, 97(11):156-164. [3] YANG J L, ZHU T, XU Y, et al. Study on ultraviolet fluorescence spectra of monomers of distilled spirits[J]. Spectroscopy and Spectral Analysis, 2009, 29(12):3339-3343(in Chinese). [4] TANG R. The relations of capproate bacteria, pit mud and Luzhou-flavour liquor[J]. Liquor Making, 2005, 32(4):24-27(in Chinese). [5] ZHU Zh W, QUE L Zh, CHEN G Q, et al.Year discrimination of mild aroma Chinese liquors using three-dimensional fluorescence spectroscopy combinedwith parallel factor and neural network[J]. Spectroscopy and Spectral Analysis, 2015, 35(9):2573-2577(in Chinese). [6] ZHU M, FAN W, XU Y, et al.1, 1-Diethoxymethane and methanethiol as age markers in Chinese roasted-sesame-like aroma and flavour type liquor[J]. European Food Research and Technology, 2016, 242(11):1985-1992. doi: 10.1007/s00217-016-2697-x [7] HAN S, ZHANG W, LI X, et al. Determination of three alcohols in Chinese Dukang base liquor by FT-NIR spectroscopy[J]. Food Analytical Methods, 2016, 9(8):2194-2199. doi: 10.1007/s12161-016-0403-z [8] MA L, SHEN X M, LI A J, et al. Determination of the content of lactic acid & acetic acid by HPLC[J]. Sichuan Food and Fermentation, 2016, 52(1):84-86(in Chinese). [9] WU J F, XU Y.Comparison of pyrazine compounds in seven Chinese liquors using headspace solid-phase micro-extraction and GC-nitrogen phosphourusdetection[J]. Food Science and Biotechnology, 2013, 22(5):1-6. [10] ZHU W, REN C, NIE Y, et al.Quantification of ochratoxin a in Chinese liquors by a new solid-phase extraction clean-up combined with HPLC-FLD method[J]. Food Control, 2016, 64(6):37-44. [11] CHEN G Q, WU Y M, WANG J, et al. Fluorescence spectroscopy study of synthetic food colors[J]. Spectroscopy and Spectral Analysis, 2009, 29(9):2518-2522(in Chinese). [12] ZHUNAG Y, MA Ch Q, WANG X H, et al. Simultaneous determination of three antibiotics based on synchronous fluorescence combined with neural network[J]. Laser Technology, 2017, 41(4):489-493(in Chinese). [13] DU J M, CHEN G Q, MA Ch Q, et al. Determination of carmine concentration with 3-D synchronous fluorescence spectrometry[J]. Laser Technology, 2017, 41(4):489-493(in Chinese). [14] URÍČKOVÁ V, SÁDECKÁ J, MÁJEK P.Classification of Slovak juniper-flavoured spirit drinks[J]. Journal of Food & Nutrition Research, 2015, 54(4):425-429. [15] ELCOROARISTIZABAL S, CALLEJÍN R M, AMIGO J M, et al.Fluorescence excitation-emission matrix spectroscopy as a tool for determining quality of sparkling wines[J]. Food Chemistry, 2016, 206(9):284-290. [16] ZHONG X D, FU D S, WU P P, et al.Rapid fluorescence spectroscopic screening method for the sensitive detection of thiabendazole in red wine[J]. Analytical Methods, 2014, 6(18):7260-7267. doi: 10.1039/C4AY00991F [17] WU H L, NIE J F, YU Y J, et al. Multi-way chemometric methodologies and applications:a central summary of our research work[J]. Analytica Chimica Acta, 2009, 650(1):131-142. doi: 10.1016/j.aca.2009.05.041 [18] XIA A L, WU H L, FANG D M, et al. A novel trilinear decomposition algorithm for second-order linear calibration[J]. Chemometric and Intelligent Laboratory Systems, 2000, 52(1):75-86. doi: 10.1016/S0169-7439(00)00081-2