Study on temperature characteristics of vertical cavity surface emitting lasers
-
摘要: 为了研究垂直腔面发射激光器(VCSEL)输出的光功率与器件温度的关系,确定用户可正常使用网络的温度范围,采用输出光功率与工作电流关系(P-I)模型进行了理论分析及实验验证,并通过简化模型参量及引入电压与电流关系(U-I)特性曲线来优化模型。采用了Levenberg-Marquardt(LM)算法来实现模型参量的求解,对比20℃下的测量数据与拟合数据的相似度,预测得到不同温度下的P-I特性曲线数据。结果表明,在固定温度下,输出光功率随着驱动电流的增加先增后减;在固定的驱动电流下,输出光功率随着温度增加而减小;要保证用户正常上网,电机房里VCSEL激光器工作的环境温度最多不能高于31℃。
-
关键词:
- 激光器 /
- 温度特性 /
- 输出光功率与工作电流关系(P-I) /
- 垂直腔面发射激光器 /
- Levenberg-Marquardt算法
Abstract: In order to study relationship between output power and device temperature of a vertical cavity surface emitting laser (VCSEL)and determine the temperature range at which the user can use the network normally, the relationshipmodel between output power and working current (P-I) was used to do theoretical analysis and experimental verification. Then the model was optimized by simplifying the parameters and introducing voltage-current (U-I) relationship curve. The model parameters were obtained by means of Levenberg-Marquardt (LM) algorithm. The P-I characteristic curve data at different temperatures were predicted by comparing the similarity between measured data and fitting data at 20℃.The results show that, at a fixed temperature, optical output power increasesat first and then decreaseswith the increaseof driving current. At the fixed driving current, optical output power decreaseswith the increaseof temperature. To ensure the normal Internet using, room temperature of VCSEL laserscan notbe higher than 31℃. -
-
Table 1 The initial value and the solved value of the improved P-I model
parameter model solution value initial value unit η 0.4803 0.5 — Ith, 0 -0.0094 0.3×10-3 A Rth 2.873×103 2.873×103 K/W a1 -1.7363×10-4 -2.545×10-5 A/K a2 1.6608×10-6 2.908×10-7 A/K2 a3 -4.5594×10-9 -2.531×10-10 A/K3 a4 4.4282×10-12 1.022×10-12 A/K4 -
[1] WANG H X, CHEN J D, CHANG T Y, et al. Reaserch of modudation characteristics of distributed feedback laser[J]. Laser Technology, 2017, 41(6):836-840(in Chinese).
[2] JIAN X H, HAN Zh L, DONG Zh L, et al. Status and selection of photoacoustic imaging exciting laser sources[J]. Laser Technology, 2017, 41(5):712-716(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705019
[3] DUAN H. The response characteristics of semiconductor lasers based on rate equations[D]. Qinhuangdao: Yanshan University, 2010: 1-83(in Chinese).
[4] LI F L, CHEN J J. Polarization switch and bistability in long-wavelength vertical-cavity surface-emitting lasers[J].Laser Technology, 2015, 39(4):515-519(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201504019.htm
[5] ZHANF P, YU W M, SONG Y R. Technology of SESAM mode-locked OP-VECSELs[J]. Laser Technology, 2007, 31(3):291-294(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200703001
[6] YU Ch Y. Numerical simulation and characteristic investigation of vertical-cavity surface-emitting lasers based on rate-equations[D].Beijing: Beijing University of Posts and Telecommunications, 2006: 1-79(in Chinese).
[7] MENA P V, MORIKUNI J J, HARTON A V. A simple rate-equation-based thermal vcsel model[J]. Journal of Lightwave Technology, 1999, 17(5):865-872. DOI: 10.1109/50.762905
[8] SALE T E, ROBERTS J S, DAVIDJ P R. Temperature effects in VCSEL's[J].Proceedings of the SPIE, 1997, 3003:100-110. DOI: 10.1117/12.271056
[9] LIANG F, GAO J J, TIAN X N. An improved thermal model for a VCSEL[J]. Chinese Journal of Semiconductors, 2007, 28(7):1125-1129(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtxb200707025
[10] NAKWASKI W.Thermal aspects of efficient operation of vertical ca-vity surface-emitting lasers[J]. Optical & Quantum Electronics, 1996, 28(4):335-352.
[11] QSINSKI M, NAKWASKI W.Thermal effects in vertical-cavity surface-emitting lasers[J]. International Journal of High Speed Electronics & Systems, 1994, 5(4):667-730. http://d.old.wanfangdata.com.cn/Periodical/bdtxb201802005
[12] YU S F, WONG W N, SHUM P, et al. Theoretical analysis of modulation response and second-order harmonic distortion in vertical ca-vity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(12):2139-2147. DOI: 10.1109/3.544761
[13] MOROZOV J V N, NEFF J A, ZHOU H. Analysis of vertical-cavity surface-emitting laser multimode behavior[J]. IEEE Journal of Quantum Electronics, 1997, 33(6):980-988. DOI: 10.1109/3.585486
[14] SU Y, CHANG Y, CHEN X.Circuit model for studying temperature effects on vertical-cavity surface-emitting laser[C]//Lasers and Electro-Optics Society Meeting, 1996. New York, USA: IEEE, 2002, 1: 215-216.
[15] COLDREN L A, SCOTT J W, GEELS R S, et al. Modeling tempe-rature effects and spatial hole burning to optimizevertical-cavity surface[J]. IEEE Journal of Quantum Electronics, 1993, 29(5):1295-1308. DOI: 10.1109/3.236145
[16] MICHALZIK R, EBELING K J. Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes[J]. IEEE Journal of Quantum Electronics, 1993, 29(6):1963-1974. DOI: 10.1109/3.234459
[17] MIRZAEE H. Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm[J]. Chaos, Solitons & Fractals, 2009, 41(4):1975-1979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f688cc97912ab41d6ae320b4093ab694
[18] WANG B X. Research on LM optimization algorithm and neural network predictive control in nonlinear system[D]. Taiyuan: Taiyuan University of Technology, 2016: 1-85(in Chinese).
-
期刊类型引用(0)
其他类型引用(4)