-
3维函数光子晶体的晶格单元如图 1a所示。该光子晶体的晶格结构为立方体晶格,晶格常数为a;该光子晶体由介质球和背景介质组成,介质球的半径为R1,填充率为f,介电常数为εa, 背景介质的介电常数为εb。由图 1b可知,立方体晶格的第一不可约布里渊区的高对称点分别为Γ(0, 0, 0),X(π/a, 0, 0),M(π/a, π/a, 0)和R(π/a, π/a, π/a)。
-
计算光子晶体的方法有很多,如:时域有限差分方法、频域有限差分方法、传输矩阵法、有限元法和平面波展开法等。平面波展开法(plane wave expansion,PWE)是应用较为广泛的计算方法之一,能够较为便捷地计算1维、2维和3维光子晶体的色散曲线,并得到相应的禁带特性。作者也采用PWE法来求3维函数光子晶体的色散关系。众所周知,电磁波在通过3维函数光子晶体时,电场和磁场的关系同样满足Maxwell方程组。此时,Maxwell方程组可以化简为关于磁场H的方程:
$ \nabla \times \left[ {\frac{1}{{\varepsilon \left( \mathit{\boldsymbol{r}} \right)}}\nabla \times \mathit{\boldsymbol{H}}\left( \mathit{\boldsymbol{r}} \right)} \right] = \frac{{{\omega ^2}}}{{{c^2}}}\mathit{\boldsymbol{H}}\left( \mathit{\boldsymbol{r}} \right) $
(1) 式中,ω表示频率,c表示真空中的电磁波传播速度,r为空间矢量,∇为求取旋转的符号。对于3维函数光子晶体而言,ε(r)是周期函数, 满足:
$ \varepsilon \left( {\mathit{\boldsymbol{r}} + {\mathit{\boldsymbol{a}}_i}} \right) = \varepsilon \left( \mathit{\boldsymbol{r}} \right) $
(2) 式中,ai表示实际空间在x, y, z 3个方向上的分矢量。所以根据Bloch定理,H(r)可以表示为:
$ \mathit{\boldsymbol{H}}\left( \mathit{\boldsymbol{r}} \right) = \sum\limits_\mathit{\boldsymbol{G}} {\sum\limits_{\lambda = 1}^2 {{h_{\mathit{\boldsymbol{G}},\lambda }}{{\mathit{\boldsymbol{\hat e}}}_\lambda }\exp \left[ {{\rm{j}}\left( {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G}}} \right) \cdot \mathit{\boldsymbol{r}}} \right]} } $
(3) 式中, k是第一不可约布里渊区波矢,G是倒格矢, $ {\mathit{\boldsymbol{\hat e}}_1} $和$ {\mathit{\boldsymbol{\hat e}}_2} $是垂直于波矢k+G的正交单位矢量, h是介质周期分布经过傅里叶变换后的系数,下标λ表示沿不同倒格矢方向且λ=1, 2。倒格矢可以定义为:
$ {\mathit{\boldsymbol{a}}_i} \cdot {\mathit{\boldsymbol{b}}_j} = 2{\rm{ \mathsf{ π} }}{\delta _{ij}} $
(4) 式中, δij是狄拉克函数, bj是倒格矢空间x, y, z 3个方向的矢量。介质的分布函数ε(r)可以表示为傅里叶变换形式:
$ {\varepsilon ^{ - 1}}\left( \mathit{\boldsymbol{r}} \right) = {\varepsilon _{\mathit{\boldsymbol{G}},\mathit{\boldsymbol{G'}}}}^{ - 1} = \sum\limits_\mathit{\boldsymbol{G}} {\eta \left( \mathit{\boldsymbol{G}} \right)\exp \left( {{\rm{j}}\mathit{\boldsymbol{G}} \cdot \mathit{\boldsymbol{r}}} \right)} $
(5) 式中,G′表示与倒格矢G垂直的一个矢量。下文中,加注“′”均表示与G′相关。η(G)是ε(r)的傅里叶逆变换,G可以用b1, b2和b3来表示,即:
$ \mathit{\boldsymbol{G}} = {l_1}{\mathit{\boldsymbol{b}}_1} + {l_2}{\mathit{\boldsymbol{b}}_2} + {l_3}{\mathit{\boldsymbol{b}}_3} $
(6) 式中,l1, l2和l3是整数。那么η(G)可以表示为:
$ \eta \left( \mathit{\boldsymbol{G}} \right) = \frac{1}{V}\int_V {\frac{1}{{\varepsilon \left( \mathit{\boldsymbol{r}} \right)}}\exp \left( { - {\rm{j}}\mathit{\boldsymbol{G}} \cdot \mathit{\boldsymbol{r}}} \right){\rm{d}}\mathit{\boldsymbol{r}}} $
(7) 式中, V为单元结构的体积。如果单元结构中含有n个填充物,那么η(G)可以写为:
$ \eta \left( \mathit{\boldsymbol{G}} \right) = \varepsilon _{\rm{a}}^{ - 1}{\delta _{\mathit{\boldsymbol{G}},0}} + \sum\limits_{i = 1}^n {{\eta _i}\left( \mathit{\boldsymbol{G}} \right)\exp \left( { - {\rm{j}}\mathit{\boldsymbol{G}} \cdot {\mathit{\boldsymbol{r}}_i}} \right)} $
(8) 式中,ηi(G)表示第i个填充物在位置ri处的介电常数的傅里叶变换,而对于立方体晶格而言,显然i=1;δG, 0表示与倒格矢G相关的狄拉克函数。将(3)式和(6)式代入(1)式中可以得到:
$ \begin{array}{*{20}{c}} {\sum\limits_{\mathit{\boldsymbol{G'}},\lambda '} {\left| {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G}}} \right|\left| {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G}}} \right|} \times }\\ {\left[ {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{\hat e}}}_2} \cdot {\varepsilon _{\mathit{\boldsymbol{G}},\mathit{\boldsymbol{G'}}}}^{ - 1} \cdot {{\mathit{\boldsymbol{\hat e}}}_{2'}}}&{ - {{\mathit{\boldsymbol{\hat e}}}_2} \cdot {\varepsilon _{\mathit{\boldsymbol{G}},\mathit{\boldsymbol{G'}}}}^{ - 1} \cdot {{\mathit{\boldsymbol{\hat e}}}_{1'}}}\\ { - {{\mathit{\boldsymbol{\hat e}}}_1} \cdot {\varepsilon _{\mathit{\boldsymbol{G}},\mathit{\boldsymbol{G'}}}}^{ - 1} \cdot {{\mathit{\boldsymbol{\hat e}}}_{2'}}}&{{{\mathit{\boldsymbol{\hat e}}}_1} \cdot {\varepsilon _{\mathit{\boldsymbol{G}},\mathit{\boldsymbol{G'}}}}^{ - 1} \cdot {{\mathit{\boldsymbol{\hat e}}}_{1'}}} \end{array}} \right]{h_{\mathit{\boldsymbol{G'}},\lambda '}} = }\\ {\frac{{{\omega ^2}}}{{{c^2}}}{h_{\mathit{\boldsymbol{G}},\lambda }}} \end{array} $
(9) 式中, εG, G′-1=η(G-G′)。显然,要求解(9)式,确定η(G-G′)成为了关键。
$ \eta \left( \mathit{\boldsymbol{G}} \right) = \left\{ \begin{array}{l} \frac{1}{V}\int_V {\left\{ {\frac{1}{{{\varepsilon _{\rm{b}}}}} + \left[ {\frac{1}{{{\varepsilon _{\rm{a}}}\left( \mathit{\boldsymbol{r}} \right)}} - \frac{1}{{{\varepsilon _{\rm{b}}}}}} \right] \cdot S\left( \mathit{\boldsymbol{r}} \right)} \right\}{\rm{d}}r,\left( {\mathit{\boldsymbol{G}} = 0} \right)} \\ \frac{1}{V}\int_V {\left\{ {\frac{1}{{{\varepsilon _{\rm{b}}}}} + \left[ {\frac{1}{{{\varepsilon _{\rm{a}}}\left( \mathit{\boldsymbol{r}} \right)}} - \frac{1}{{{\varepsilon _{\rm{b}}}}}} \right] \cdot S\left( \mathit{\boldsymbol{r}} \right)} \right\}} \times \\ \exp \left( { - {\rm{j}}\mathit{\boldsymbol{G}} \cdot \mathit{\boldsymbol{r}}} \right){\rm{d}}\mathit{\boldsymbol{r}},\left( {\mathit{\boldsymbol{G}} \ne 0} \right) \end{array} \right. $
(10) 式中, 。
(9) 式中的hG, λ可以表示为:
$ {h_{\mathit{\boldsymbol{G}},\lambda }} = \sum\limits_\mathit{\boldsymbol{G}} {A\left( {\mathit{\boldsymbol{k}}\left| \mathit{\boldsymbol{G}} \right.} \right)\exp \left[ {{\rm{j}}\left( {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G}}} \right) \cdot \mathit{\boldsymbol{r}}} \right]} $
(11) 显然,(10)式可以写成关于傅里叶变换系数A(k|G)的方程:
$ \begin{array}{*{20}{c}} {\left( {\frac{1}{V}\int_V {\left\{ {\frac{1}{{{\varepsilon _{\rm{b}}}}} + \left[ {\frac{1}{{{\varepsilon _{\rm{a}}}\left( \mathit{\boldsymbol{r}} \right)}} - \frac{1}{{{\varepsilon _{\rm{b}}}}}} \right] \cdot S\left( \mathit{\boldsymbol{r}} \right)} \right\}{\rm{d}}\mathit{\boldsymbol{r}}} } \right) \cdot }\\ {\left| {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G}}} \right|\left| {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G'}}} \right| \cdot \mathit{\boldsymbol{F}} \cdot A\left( {\mathit{\boldsymbol{k}}\left| \mathit{\boldsymbol{G}} \right.} \right) + }\\ {\sum\limits_{\mathit{\boldsymbol{G'}}} {\left( {\frac{1}{V}\int_V {\left\{ {\frac{1}{{{\varepsilon _{\rm{b}}}}} + \left[ {\frac{1}{{{\varepsilon _{\rm{a}}}\left( \mathit{\boldsymbol{r}} \right)}} - \frac{1}{{{\varepsilon _{\rm{b}}}}}} \right] \cdot S\left( \mathit{\boldsymbol{r}} \right)} \right\}{\rm{exp}}\left( { - {\rm{j}}\mathit{\boldsymbol{G}} \cdot \mathit{\boldsymbol{r}}} \right){\rm{d}}\mathit{\boldsymbol{r}}} } \right)} \cdot }\\ {\left| {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G}}} \right|\left| {\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{G'}}} \right| \cdot \mathit{\boldsymbol{F}} \cdot A\left( {\mathit{\boldsymbol{k}}\left| \mathit{\boldsymbol{G}} \right.} \right) = }\\ {\frac{{{\omega ^2}}}{{{c^2}}}A\left( {\mathit{\boldsymbol{k}}\left| \mathit{\boldsymbol{G}} \right.} \right)} \end{array} $
(12) 式中, 。对于常规的3维介质光子晶体而言,沿着第一不可约布里渊区边缘求解(12)式,即可以得到色散曲线。而对于3维函数光子晶体而言,求解(10)式将与求解常规3维介质光子晶体的技术略有不同。为了说明该求解过程,εa(r)的表达式选取与参考文献[16]中给出的形式相同,即εa(r)=I·r+b,其中I与b是常数,这里r为标量。则该3维函数光子晶体介电常数的函数表达式为:
$ \varepsilon \left( \mathit{\boldsymbol{r}} \right) = \left\{ \begin{array}{l} I \cdot r + b,\left( {0 \le r \le {R_1}} \right)\\ {\varepsilon _{\rm{b}}},\left( {{R_1} < r \le a} \right) \end{array} \right. $
(13) 那么,3维函数光子晶体的η(G)根据(10)式可以表示为:
$ \begin{array}{*{20}{c}} {\eta \left( \mathit{\boldsymbol{G}} \right) = \frac{1}{{{\varepsilon _{\rm{b}}}}}{\delta _{\mathit{\boldsymbol{G}},0}} + \frac{1}{V}\int_V {\left( {\frac{1}{{I \cdot r + b}} - \frac{1}{{{\varepsilon _{\rm{b}}}}}} \right) \times } }\\ {{\rm{exp}}\left( { - {\rm{j}}\mathit{\boldsymbol{G}} \cdot \mathit{\boldsymbol{r}}} \right){\rm{d}}\mathit{\boldsymbol{r}}} \end{array} $
(14) 显然,求解(14)式成为了获得3维函数光子晶体的关键。显然,得到(14)式的解析解是非常困难的,可以采用ZHANG等人[21-22]提出的基于网格剖分的PWE方法来进行计算,当剖分的网格数量足够大时,所得的结果与解析解的相对误差将小于1%[21-22]。因此,联立(12)式和(14)式就可以得到3维函数光子晶体的色散曲线。值得注意的是,为了提高计算η(G-G′)时的收敛性,可以根据HO等人[23]提出的方法来实现,即求取εG, G′的逆来得到。LI[24]证明该方法不仅正确,而且能很好地回避了介质不连续分布时产生的Gibbs振荡现象。
3维函数光子晶体的特性研究
Investigation on characteristics of 3-D function photonic crystal
-
摘要: 为了研究3维函数光子晶体的光子禁带特性,采用平面波展开法计算得到色散曲线,推导了平面波展开法的相关计算公式以及介质球介电常数的函数关系式,探讨了可调参量函数系数I和介质球半径R1对光子禁带特性的影响。结果表明,3维函数光子晶体呈立方体晶格分布,由介质球填充空气背景;与常规3维介质光子晶体相比,3维函数光子晶体不仅能得到可调谐的光子禁带,而且可以拓展禁带带宽,并增加光子禁带的数量;改变函数系数I的大小可以实现对光子禁带数量、位置和带宽的调谐;改变介质球半径R1可以对光子禁带带宽实现展宽,并改变光子禁带的位置。该研究对设计新型可调谐器件是有帮助的。Abstract: In order to study photonic band gap of 3-D functional photonic crystal, dispersion curve was calculated by using plane wave expansion method. Correlation calculation formula of plane wave expansion method and function relation of dielectric constant of dielectric sphere were derived. The effects of the adjustable parameter I and dielectric sphere radius R1 on photonic band gap were discussed. The result shows that, 3-D function photonic crystal is cube lattice distribution and air background is filled with medium ball. Compared with conventional 3-D dielectric photonic crystals, 3-D function photonic crystal can obtain the tunable photonic band gap, expand the bandwidth of forbidden band, and increase the number of photonic band gaps. The number, position and bandwidth of photonic band gaps can be tuned by changing the size of tunable parameter I. At the same time, the bandwidth and position of photonic band gaps can be tuned by changing the sphere radius R1 of the medium. The study is helpful for the design of new tunable devices.
-
-
[1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486-2490. doi: 10.1103/PhysRevLett.58.2486 [2] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059-2062. doi: 10.1103/PhysRevLett.58.2059 [3] ZHANG H F. Study on electromagnetic characteristics of plasma photonic crystals[D].Nanjing: Nanjing University of Aeronautics and Astronautics University, 2014: 14-31(in Chinese). [4] RYBIN M V, KHANIKAEV A B, INOUE M, et al. Fano resonance between Mie and Bragg scattering in photonic crystals[J]. Physical Review Letters, 2009, 103(2):023901. doi: 10.1103/PhysRevLett.103.023901 [5] WANG Z, FAN S. Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines[J]. Physical Review, 2003, E68(6):066616. [6] ZHANG H F, LIU S B. Enhanced the tunable omnidirectional photonic band gaps in the two-dimensional plasma photonic crystals[J]. Optical and Quantum Electronics, 2016, 48(11):508-511. doi: 10.1007/s11082-016-0782-9 [7] LIU Q, LI S, GAO X, et al. Simulation of a short and broadband polarization splitter based on photonic crystal fiber filled with tellurite glass[J]. Optical and Quantum Electronics, 2017, 49(2):60-64. doi: 10.1007/s11082-017-0896-8 [8] MA R K, ZHANG Y Ch, FANG Y T. Broadband THz absorbers based on graphene and 1-D photonic crystal[J]. Laser Technology, 2017, 41(5):723-727(in Chinese). [9] LI Y, MO W Ch, YANG Zh G, et al. Generation of terahertz vortex beams base on metasurface antenna array[J]. Laser Technology, 2017, 41(5):644-648(in Chinese). [10] CHAU Y F, YANG T J, LEE W D. Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits[J]. Applied Optics, 2004, 43(36):6656-6663. doi: 10.1364/AO.43.006656 [11] ZHANG H F, LIU S B. The tunable omnidirectional reflector based on two-dimensional photonic crystals with superconductor constituents[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(2):1-8. [12] WANG Y, ZHANG D, XU S, et al. Low-loss Y-junction two-dimensional magneto-photonic crystals circulator using a ferrite cylinder[J]. Optics Communications, 2016, 369:1-6. doi: 10.1016/j.optcom.2016.02.019 [13] ZHANG H F, LIU S B. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method[J]. AIP Advances, 2016, 6(8):085116. doi: 10.1063/1.4961726 [14] NORRIS D J, VLASOV Y A. Chemical approaches to three-dimensional semiconductor photonic crystals[J]. Advanced materials, 2001, 13(6):371-376. doi: 10.1002/(ISSN)1521-4095 [15] PIPER J R, FAN S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided re-sonance[J]. ACS Photonics, 2014, 1(4):347-353. doi: 10.1021/ph400090p [16] XIAO L, LEI T Y, LIANG Y, et al. Two-dimensional function photonic crystal.Acta Physica Sinica, 2016, 65(13):134207(in Chinese). [17] LIU X J, LIANG Y, MA J, et al. Two-dimensional function photonic crystals[J]. Physica, 2017, E85:227-237. [18] WU X Y, ZHANG B J, YANG J H, et al. Transmission character of general function photonic crystals[J]. Physica, 2012, E45:166-172. [19] LUO M, LIU Q H. Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency[J]. Journal of the Optical Society of America, 2010, A27(8):1878-1884. [20] ZHANG H F, LIU S, KONG X K. Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices[J]. Progress in Electromagnetics Research, 2013, 141:267-289. doi: 10.2528/PIER13051703 [21] ZHANG H F, DING G W, LI H M, et al. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure[J]. Physics of Plasmas, 2015, 22(2):022105. doi: 10.1063/1.4906886 [22] ZHANG H F, CHEN Y Q. The properties of two-dimensional fractal plasma photonic crystals with Thue-Morse sequence[J]. Physics of Plasmas, 2017, 24(4):042116. doi: 10.1063/1.4981220 [23] HO K M, CHAN C T, SOUKOULIS C M. Existence of a photonic gap in periodic dielectric structures[J]. Physical Review Letters, 1990, 65(25):3152-3155. doi: 10.1103/PhysRevLett.65.3152 [24] LI L. Use of Fourier series in the analysis of discontinuous periodic structures[J]. Journal of the Optical Society of America, 1996, A13(9):1870-1876. [25] ZHANG H F, LIU S B, KONG X K, et al. The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice[J]. Optics Communications, 2013, 288:82-90. doi: 10.1016/j.optcom.2012.09.078