高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于V型谐振腔的热稳定性分析

范一鸣 魏勇 张戈 李宏民 陶家友 周岳平

引用本文:
Citation:

基于V型谐振腔的热稳定性分析

    作者简介: 范一鸣(1995-), 男, 大学本科生, 主要从事激光稳定性研究.
    通讯作者: 魏勇, weiyong@hnist.edu.cn
  • 基金项目:

    国家自然科学基金资助项目 21427801

    湖南省教育厅资助项目 17B112

  • 中图分类号: TN202;TN248.1

Analysis of thermal stability based on V-type folded cavity

    Corresponding author: WEI Yong, weiyong@hnist.edu.cn ;
  • CLC number: TN202;TN248.1

  • 摘要: 为了提高V型谐振腔的热稳定性,采用了图解分析法,将V型折叠腔等效为腔内含有一个透镜的共轴球面腔。同时考虑到晶体热透镜效应,结合多元件光学谐振腔的等价腔分析法,将等效后腔内含透镜组的多元件球面腔近似等价为腔内不含透镜的共轴球面空腔。对V型腔等价后的共轴球面空腔的稳定性进行了理论计算和仿真分析。结果表明,当总腔长为75mm、折叠角为0.15π左右时,谐振腔具有最宽的热稳定范围;此时若增益介质与折叠镜的间距为28mm,则谐振腔能适应的最小热透镜焦距可达12mm。这一结果体现了谐振腔关键参量对热稳定性的重要影响,对激光腔型稳定性的优化设计具有一定的指导意义。
  • Figure 1.  Schematic diagram of V-type resonant cavity

    Figure 2.  Schematic diagram of g′ and g″ equivalent cavity of V-type resonant cavity

    Figure 3.  Schematic diagram of g′ and g″ equivalent cavity in V-type resonant cavity under thermal effect

    Figure 4.  Relationship between product of g1* and cavity length of left sub cavity L11 under different folding angles θ

    Figure 5.  Schematic diagram of the overall stability of V-type resonant cavity

    Figure 6.  Relationship of product of g′, thermal lens focal length f1 and cavity length of left sub cavity L21

    Figure 7.  Relationship of product of g′, thermal lens focal length f1 and cavity length of left sub cavity L21 under different d

    Figure 8.  Schematic diagram of the overall stability of V-type resonant cavity under thermal effect

  • [1]

    WU Y, LONG X L, JIAO Zh X, et al. Optimal design of high power Nd:YAG laser with thermal lens compensation[J]. Laser Technology, 2015, 39(3):377-380(in Chinese). 
    [2]

    MAGNI V. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability[J]. Applied Optics, 1986, 25(1):107-110. doi: 10.1364/AO.25.000107
    [3]

    CHEN X Y, WANG D, WANG Ch, et al. Effect of Nd3+ doping concentration on the output characteristics of the no water cooling Nd:YAG laser[J]. Infrared and Laser Engineering, 2011, 40(4):817-821(in Chinese).
    [4]

    HOMMERICH U, EILERS H, STRAUSS E, et al. Optically induced lensing effects in Nd3+-doped laser glass measured by photothermal beam-deflection spectroscopy[J]. Optics Letters, 1992, 17(3):213-215. doi: 10.1364/OL.17.000213
    [5]

    XUE J W, FANG Y J, XIE H J, et al. Design of three-mirror-folded cavity with two Rayleigh length.Laser Technology, 2017, 41(1):51-55(in Chinese). 
    [6]

    ZHANG L K, GU H D, ZHENG Ch Q, et al. Analysis and design of the thermal-lens-insensitive cavity in long-pulse green lasers. Laser Technology, 2011, 35(2):167-169(in Chinese). 
    [7]

    SHAN X Y, WEI X Y, WU N L, et al. Study on the beam quality of diode pumped Yb:YAG thin disk laser and the intracavity frequency doubling in V-type resonator[J]. Chinese Journal of Quantum Electronics, 2004, 21(5):587-591(in Chinese). 
    [8]

    WAN D P, WANG Y M, GUI ZH X, et al. A new method for stability analysis and design of laser folded cavity[J]. Chinese Journal of Lasers, 2007, 34(9):1217-1221(in Chinese). 
    [9]

    LI F, BAI Y, BAI J T, et al. A thermal dynamic graphic analysis of V type solid laser resonator[J]. Journal of Yanbian University(Natural Science Edition), 2006, 32(3):176-180(in Chinese). 
    [10]

    KOGELNIK H. Imaging of optical modes-resonators with internal lenses[J]. Bell Labs Technical Journal, 1965, 44(3):455-494. doi: 10.1002/bltj.1965.44.issue-3
    [11]

    ZHOU B K. Laser principle[M]. 7th ed.Beijing:National Defence Industry Press, 2014:57-69(in Chinese).
    [12]

    XU R Q, LIU Y A, WANG J. Design of high output power thermal stable resonator[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 1999, 13(4):29-32(in Chinese).
    [13]

    CAO Q, ZHANG W J. Equivalent cavity of multi-element resonant cavity[J]. Acta Optica Sinica, 1994, 14(2):135-139(in Chinese). 
    [14]

    LÜ B D, WEI G H. The equivalent resonator optical resonators analysis method[J]. Journal of Sichuan University (Natural Science Edition), 1985, 22(4):53-60(in Chinese).
    [15]

    LÜ B D. Fundamental mode dynamic stabilizing telescope resonator[J]. Acta Optica Sinica, 1987, 7(2):11-17(in Chinese). 
    [16]

    YU B H, NI Y J, LOU G Y. Thermal lens effect of Nd:YAG laser and its influence on laser output[J]. Journal of Xinyang Normal University (Natural Science Edition), 2004, 17(2):166-169(in Chinese). 
    [17]

    ZHU S Q, FU Q K, LI A M, et al. Design of dynamic thermal stable resonator for LD pumped Nd:GdVO4 blue laser[J]. Opto-Electronic Engineering, 2010, 37(11):43-47(in Chinese).
    [18]

    WANG X J. Thermal stability of parallel planar resonators containing heat thick lenses[J]. Chinese Journal of Lasers, 1985, 12(5):12-16(in Chinese).
    [19]

    HUANG Zh M, REN Zh Y, BAI J T. 200W double resonator combined cavity quasi continuous green laser[J]. Acta Photonica Sinica, 2009, 38(6):1331-1335(in Chinese). 
  • [1] 王鹏飞吕百达 . 折叠腔腔参数对内腔倍频系统稳定性的影响. 激光技术, 2003, 27(4): 328-330.
    [2] 杨真 . 新型绝热微环谐腔型低功耗硅基调制器的设计. 激光技术, 2015, 39(6): 885-888. doi: 10.7510/jgjs.issn.1001-3806.2015.06.032
    [3] 柏香虎朱向冰庄亚宝程芳芳许子豪朱俊峰 . 折叠光路结构头戴显示器的光学设计. 激光技术, 2024, 48(5): 746-751. doi: 10.7510/jgjs.issn.1001-3806.2024.05.020
    [4] 杨立洁邢鹤园王桂梅郭炜 . 紫外荧光法SO2监测仪激发光光路的设计仿真. 激光技术, 2021, 45(1): 67-72. doi: 10.7510/jgjs.issn.1001-3806.2021.01.012
    [5] 李鹏飞朱向冰陈壮壮 . 轻小型头戴显示器的光学设计. 激光技术, 2021, 45(2): 202-207. doi: 10.7510/jgjs.issn.1001-3806.2021.02.013
    [6] 于远航王文生 . 折衍混合紫外告警光学系统设计. 激光技术, 2012, 36(3): 421-423,427.
    [7] 李成江 . 激光聚光系统中激光光学与几何光学设计参数间的差异研究. 激光技术, 1994, 18(5): 277-280.
    [8] 孙浩唐勇李京展贾天祥杨铭张远健柴利飞陈宝莹 . 硬盘盘片表面疵病检测装置的光学系统设计. 激光技术, 2012, 36(1): 118-119,123. doi: 10.3969/j.issn.1001-3806.2012.01.030
    [9] 朱海宇马军张鸿佳王文生 . 刑侦日盲紫外折衍混合变焦光学系统设计. 激光技术, 2015, 39(2): 242-246. doi: 10.7510/jgjs.issn.1001-3806.2015.02.021
    [10] 王诗昊向阳申屠功伟 . 外鼓式热敏CTP制版机光学系统设计. 激光技术, 2023, 47(1): 98-102. doi: 10.7510/jgjs.issn.1001-3806.2023.01.015
    [11] 彭涛陶刚姜勇周鼎富 . 激光测风雷达折射式收发同轴光学天线设计. 激光技术, 2017, 41(5): 684-687. doi: 10.7510/jgjs.issn.1001-3806.2017.05.013
    [12] 豆修浔朱佳巍丁桂林 . 手机镜头的光学系统设计及杂散光模拟. 激光技术, 2016, 40(4): 500-505. doi: 10.7510/jgjs.issn.1001-3806.2016.04.010
    [13] 马拥华马建军 . 一种收发隔离光学系统的设计. 激光技术, 2018, 42(1): 117-120. doi: 10.7510/jgjs.issn.1001-3806.2018.01.023
    [14] 谢洪波宫仁敏韩凛于洪朗张振华 . 一种便携式激光多普勒测速光学系统的设计. 激光技术, 2011, 35(1): 109-111. doi: 10.3969/j.issn.1001-3806.2011.01.030
    [15] 陈壮壮朱标宫明艳翟从鸿朱向冰 . 沉浸式头戴显示器光学系统设计. 激光技术, 2021, 45(4): 470-474. doi: 10.7510/jgjs.issn.1001-3806.2021.04.010
    [16] 蒋佳佳沈法华周慧杨亮亮仇成群徐华 . 测风激光雷达双棱镜2维扫描系统的光学设计. 激光技术, 2023, 47(3): 425-431. doi: 10.7510/jgjs.issn.1001-3806.2023.03.022
    [17] 庄亚宝朱向冰刘杰李鹏飞 . 大视场虚拟现实头戴显示器光学结构设计. 激光技术, 2022, 46(4): 486-491. doi: 10.7510/jgjs.issn.1001-3806.2022.04.008
    [18] 孙年春邓崇俊李一平程洁杨绍岚王正兴 . 非稳腔的热稳定性分析. 激光技术, 1992, 16(5): 298-301.
    [19] 王其祥 . 谐振腔稳定性分析. 激光技术, 1979, 3(3): 63-71.
    [20] 钱立勇朱向冰崔海田王元航 . 微型投影系统光路设计. 激光技术, 2018, 42(3): 385-389. doi: 10.7510/jgjs.issn.1001-3806.2018.03.018
  • 加载中
图(8)
计量
  • 文章访问数:  7004
  • HTML全文浏览量:  4576
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 录用日期:  2017-05-23
  • 刊出日期:  2018-03-25

基于V型谐振腔的热稳定性分析

    通讯作者: 魏勇, weiyong@hnist.edu.cn
    作者简介: 范一鸣(1995-), 男, 大学本科生, 主要从事激光稳定性研究
  • 1. 湖南理工学院 物理与电子学院, 岳阳 414006
  • 2. 中国科学院 福建物质结构研究所 光电材料化学与物理重点实验室, 福州 350002
  • 3. 岳阳大陆激光技术有限公司, 岳阳 414000
基金项目:  国家自然科学基金资助项目 21427801湖南省教育厅资助项目 17B112

摘要: 为了提高V型谐振腔的热稳定性,采用了图解分析法,将V型折叠腔等效为腔内含有一个透镜的共轴球面腔。同时考虑到晶体热透镜效应,结合多元件光学谐振腔的等价腔分析法,将等效后腔内含透镜组的多元件球面腔近似等价为腔内不含透镜的共轴球面空腔。对V型腔等价后的共轴球面空腔的稳定性进行了理论计算和仿真分析。结果表明,当总腔长为75mm、折叠角为0.15π左右时,谐振腔具有最宽的热稳定范围;此时若增益介质与折叠镜的间距为28mm,则谐振腔能适应的最小热透镜焦距可达12mm。这一结果体现了谐振腔关键参量对热稳定性的重要影响,对激光腔型稳定性的优化设计具有一定的指导意义。

English Abstract

    • 热透镜效应是影响激光器稳定性的重要因素之一,当激光晶体在介质高耗散功率下工作时,一般谐振腔(如F-P腔、平-凹腔等)的热适应能力差,受热效应的影响十分严重。为了消除热效应对固体激光器的影响,国内外虽做了很多研究,如:腔内加入补偿镜[1-2]、改变晶体掺杂浓度[3-4]、改变抽运和散热方式[3-4]等,提高了激光器的热稳定性,但没有从腔型结构设计的角度找到解决问题的关键因素。比如V型腔是一种热效应不灵敏的谐振腔[5-6],通过适当的参量调整,可以获得很宽的热稳定范围, 但需要进行调整的参量有很多,如总腔长、折叠角、激光晶体的位置等。其中哪些参量的改变对激光输出稳定性比较敏感,这是目前如何更好地优化激光输出性能需要考虑的重要问题。作者采用多元件光学谐振腔等价分析理论,对热透镜效应下的Nd:YAG激光V型谐振腔的稳定性进行了分析仿真,对V型腔中的各参量采用控制变量法进行分析比较,找到了V型腔中扩大谐振腔热稳定范围和增强谐振腔热适应能力的关键控制因素,对激光器腔型稳定性的优化设计具有重要的指导意义。

    • V型谐振腔结构如图 1所示。球面折叠镜M13的曲率半径为R13,端面反射镜M11和M12的曲率半径分别为R11R12,折叠角为θ。Nd:YAG激光晶体置于其中一臂[7]

      Figure 1.  Schematic diagram of V-type resonant cavity

      在不考虑热透镜效应(理想状况)并忽略像散的条件下,将折叠镜等效为一个薄透镜[8],如图 2所示。

      Figure 2.  Schematic diagram of g′ and g″ equivalent cavity of V-type resonant cavity

      为了简化分析,仅将折叠镜等效为子午面上的薄透镜M13,等效带来的像散可加入一定厚度的布儒斯特片消除[9],等效透镜的焦距F为:

      $ F = {R_{13}}{\rm{cos}}\theta /2 $

      (1)

      对于这类谐振腔,采用KOGELNIK提出的g*参量等价腔分析法,即按照透镜成像原理,将含有透镜的共轴球面腔等价为不含透镜的空腔[10],如图 2所示。

      薄透镜M13将谐振腔分割为两个子腔,左侧子腔长为L11,右侧子腔长为L12,总腔长为L1。当左侧端面镜通过透镜在右侧成像时,像与右侧端面镜构成等价空腔,设像M11′的曲率半径为R11′,像方子腔长为L11′,根据透镜成像原理解得:

      $ \left\{ \begin{array}{l} {R_{11}}^\prime = \frac{{{R_{11}}}}{{\left( {\frac{{{L_{11}}}}{F}-1} \right)\left( {\frac{{{L_{11}}-{R_{11}}}}{F}-1} \right)}}\\ {L_{11}}^\prime = \frac{1}{{{F^{ - 1}} - {L_{11}}^{ - 1}}}\\ {L_1}^\prime = {L_{12}} - {L_{11}}^\prime \end{array} \right. $

      (2)

      式中,L1′为等效空腔腔长。此处引入g*参量,其定义与共轴球面腔的g参量[11-12]一致,即等效空腔的g1*参量和稳定性条件为:

      $ \begin{array}{l} \\ \left\{ \begin{array}{l} {g_{11}}^* = 1-\frac{{{L_1}^\prime }}{{{R_{11}}^\prime }}\\ {g_{12}}^* = 1-\frac{{{L_1}^\prime }}{{{R_{12}}}} \end{array} \right., \left( {0 < {g_{11}}^*{g_{12}}^* < 1} \right) \end{array} $

      (3)

      (3) 式仅表示右侧子腔的稳定条件,不能用来求解左侧子腔稳定性[13],但对应的左侧子腔等效参量和稳定性条件同样可通过上述成像原理解得。如图 2所示,右侧端面镜通过透镜在左侧成像,像与左侧端面镜构成的g2*参量等价空腔的腔长为L1″,等价腔右端面镜M12′的曲率半径为R12′。

    • 热透镜效应下的V型谐振腔,等效于V型等价腔内增加一个焦距动态变化的薄透镜,形成腔内透镜组,如图 3所示。图中, M23为等效热透镜,M24为折叠镜等效透镜。对于这类谐振腔,采用多元件光学谐振腔等价腔分析法[14-15],即引入光学间隔参量Δ,利用牛顿公式和高斯公式依次对两透镜的成像关系进行分析,将含有透镜组的共轴球面腔按照成像原理等价为不含透镜的空腔。

      Figure 3.  Schematic diagram of g′ and g″ equivalent cavity in V-type resonant cavity under thermal effect

      图 3所示为热效应下V型腔的g′, g″等价空腔。图中端面反射镜M21, M22的曲率半径分别为R21, R22,透镜M23, M24的焦距分别为f1, f2,透镜组将谐振腔分割为两个子腔,左侧子腔腔长为L21,右侧腔长为L22,两透镜间距为d,光学间隔为Δ

      当左侧端面镜通过透镜组在右侧成像时,其像与右侧端面镜构成等价共轴球面空腔,如图 3所示。设像M21′的曲率半径为R21′,像方子腔长为L21′,根据光学系统成像原理可解得曲率半径R21′和等价空腔的腔长L2′为:

      $ \begin{array}{l} {R_{21}}^\prime = \frac{{{f_1}^2{f_2}^2{R_{21}}}}{{\left( {{L_{21}}\mathit{\Delta + }{\mathit{f}_1}d-{f_1}{f_2}} \right)\left( {{L_{21}}\mathit{\Delta + }{\mathit{f}_1}d-{f_1}{f_2}-{R_{21}}\mathit{\Delta }} \right)}}\\ {L_2}^\prime = \frac{{{f_1}{f_2}\left( {d + {L_{21}} + {L_{22}}} \right) - {L_{21}}{L_{22}}\mathit{\Delta - d}\left( {{f_1}{L_{22}} + {f_2}{L_{21}}} \right)}}{{{f_1}{f_2} - {L_{21}}\mathit{\Delta - d}{\mathit{f}_1}}} \end{array} $

      (4)

      式中,光学间隔Δ=f1+f2-d。则根据共轴球面腔的稳定性条件可知:

      $ \left\{ {\begin{array}{*{20}{l}} {{g_{21}}^\prime = 1 - \frac{{{L_2}^\prime }}{{{R_{21}}^\prime }}}\\ {{g_{22}}^\prime = 1 - \frac{{{L_2}^\prime }}{{{R_{22}}}}} \end{array}} \right.,\left( {0 < {g_{21}}^\prime {g_{22}}^\prime < 1} \right) $

      (5)

      当满足上述条件时,图 3所示B线往右的子腔稳定,但不能表示A线往左的子腔稳定性。对应的左侧子腔等效参量和稳定性条件可按照相同的透镜组成像原理解得,如图 3所示,右侧端面镜通过透镜组在左侧成像,像与左侧端面镜构成的g″参量等价腔的腔长为L2″,右端面镜M32″的曲率半径为R22″。

    • 为确定参量调整对谐振腔稳定性的影响,在不产生热效应的前提下,对折叠角θ和总腔长L1(或子腔长L11,注:L12=L1-L11)采用控制变量法,端面镜曲率半径R11, R12和折叠镜曲率半径R13用常量表示。

      为了便于分析,先按照经验取值如下:令折叠角θ取值范围为0~0.5π,暂令谐振腔总腔长L1=75mm,左侧子腔长L11取值范围为0mm~75mm,设各反射镜曲率半径为R11=60mm, R13=45mm, R12=1m(相当于平面反射镜),对相应的右侧子腔稳定性进行求解,结果如图 4所示。

      Figure 4.  Relationship between product of g1* and cavity length of left sub cavity L11 under different folding angles θ

      图 4所示为不同折叠角下右侧子腔的稳定性。若以满足稳定条件的左侧子腔腔长的取值范围大小来表征右侧子腔稳定范围,图 4b所示当折叠角θ=0.15π时,对应的稳定范围大致为19mm~75mm,g1*参量积虽小于0.5,但如果折叠角继续增大,稳定范围内部分区域g1*参量积将大于0.5;图 4c所示增大至0.3π时,稳定范围不再连续。由此可见,随着折叠角的继续增大,曲线继续变陡,间断范围继续增大,谐振腔趋于不稳定。

      结合图 4bθ=0.15π时出现的临界值,并考虑到谐振腔腔长应有尽可能大的变化范围去适应晶体热效应,对折叠角与总腔长之间的关系进行仿真分析,结果显示:(1)当θ=0.15π时,使右侧子腔内光束形成稳定振荡的子腔长范围不出现间断,并保证足够大的g1*参量积变化范围的总腔长L1的最大取值为80mm,若大于该临界值,将出现间断,且间断范围大小呈递增的趋势;(2)当折叠角θ=0.3π时,总腔长L1的最大取值为52mm;(3)当折叠角θ=0.1π时,总腔长L1的最大取值为85mm。

      由此可见,要确定合适的谐振腔总腔长,使得谐振腔有较宽的稳定范围,就必须考虑折叠角的大小。

      此外如图 4d所示,当折叠角较大时,不管总腔长如何调整,均难以得到连续的稳定范围。综上所述,在V型折叠腔中,对谐振腔稳定性起决定性的因素是折叠角θ

      在实际应用中,只有保证谐振腔的稳定范围连续,才能使谐振腔更好的去适应动态变化的工作状态。因此,在理想状况下,设V型谐振腔总腔长为75mm,折叠角为0.15π,则V型谐振腔整体的稳定范围如图 5所示。

      Figure 5.  Schematic diagram of the overall stability of V-type resonant cavity

      图 5中可以看出,V型谐振腔的稳定范围为19.63mm~55.37mm,且即使两侧端面镜曲率半径相差很大,两子腔的稳定性变化曲线也呈明显的对称性,相同子腔长,即L11=L12,对应的g*参量积近似相等,这正是前面只对一侧子腔进行稳定性分析的原因。

      此外,上述曲线说明端面镜曲率半径对谐振腔稳定性的影响不大,又因为端面镜的曲率半径不会随晶体热效应而发生变化,故不对曲率半径进行变量分析。

      上述分析忽略了Nd:YAG晶体的影响,在本文讨论的激光器中,激光晶体采用侧面抽运,抽运会使激光晶体产生热透镜效应。Nd:YAG晶体具有良好的热导性,其等效热透镜焦距与介质耗散功率[16-17]之间的存在一定的数量关系。为了简化问题的分析,作者仅仅考虑激光晶体热透镜焦距大小对谐振腔稳定性的影响。如热透镜焦距大于1m时,热透镜效应不明显;热透镜焦距小于200mm时,热透镜效应十分严重。

      由(4)式和(5)式可知,热效应下谐振腔稳定性分析需要考虑的变量如下:左侧子腔长L21(或右侧子腔长L22)、热透镜焦距f1和V型腔等效透镜间距d,都是实际应用中需要考虑的重要参量。

      为了确定V型腔的热稳定范围,暂设透镜间距d=28mm(保证Δ不为负),对右侧子腔的热稳定性进行分析比较,结果如图 6所示。

      Figure 6.  Relationship of product of g′, thermal lens focal length f1 and cavity length of left sub cavity L21

      以满足稳定条件的左侧子腔腔长的取值范围大小来表征右侧子腔稳定范围,如图 6b所示, f1∈(12, 92)mm时,右侧子腔有最宽的稳定范围,g′参量积在0~1之间有很宽的变化范围;如图 6c图 6d所示,若热焦距增加,在L21取值较大处,g′等价参量积不再满足稳定条件,即稳定范围略有减小,但仍存在较宽的稳定范围;若减小,如图 6a所示,当热焦距较小时,不管腔长如何调整,均难以使谐振腔稳定。

      由此可见,当透镜间距d确定时,谐振腔能适应的最小热透镜焦距f1随之确定。为了验证该结论,本文中对透镜间距与谐振腔热效应适应能力之间的关系做进一步分析,结果如图 7所示。

      Figure 7.  Relationship of product of g′, thermal lens focal length f1 and cavity length of left sub cavity L21 under different d

      图 7b所示, 当d=38mm时,使右侧子腔具有最理想稳定范围的热透镜焦距f1∈(18, 98)mm。由此可见,透镜间距d越小,谐振腔能适应的热透镜焦距f1越小,激光器工作时允许的最大介质耗散功率越大。相反,间距越大,相同情况下的最小热透镜焦距就难以适应,对应的最大介质耗散功率将导致激光器难以正常运行。

      而针对于Δ的取值,当f1+f2d时,Δ≥0,对应于上述分析;当f1+f2 < d时,Δ < 0,上述结论不再适用,这与透镜组成像有关,但为了使激光器有更好的热适应能力,d的取值应尽可能小,故上述情况可不考虑。

      当Nd:YAG晶体产生严重的热透镜效应,即热透镜焦距f1∈(12, 92)mm时,与谐振腔理想状况下稳定范围(即:L21∈(19.63, 55.37)mm)对应的谐振腔整体的稳定性如图 8所示。

      Figure 8.  Schematic diagram of the overall stability of V-type resonant cavity under thermal effect

      图 8可知,与理想状况相比较,谐振腔虽稳定,但g参量积已趋于临界值1。说明虽然V型腔有很好的热适应能力,但仍然会受到晶体热效应的影响,只是这一类腔型或V型腔的复合腔相对于一般的谐振腔而言[18-19],晶体热效应对V型腔稳定性的影响已得到很大的削减。

    • V型腔对折叠角θ的变化十分敏感,受热透镜效应的影响很大,热效应适应能力差,通过调整等效透镜间距d,能够有效地削弱热透镜效应对谐振腔稳定性的影响,且间距越小,谐振腔能够适应最大介质耗散功率越大,而这正是V型腔具有良好的热适应能力的关键所在。

      相应地,针对于一般谐振腔的优化,可在腔内加入补偿镜,以获得透镜间距d,再经过适当的调整,增强谐振腔的热适应能力;而针对于V型折叠腔,则可直接对激光晶体与折叠镜的间距进行调整,从而提高腔的热适应能力。

      总之,通过多元件光学谐振腔的等价腔理论计算和仿真分析,找到了扩大V型谐振腔热稳定范围和增强谐振腔热适应能力的关键控制因素,对激光器腔型稳定性的优化设计具有重要的指导意义。

参考文献 (19)

目录

    /

    返回文章
    返回