A novel method to improve spectral detection capability of imaging spectrometers
-
摘要: 为了改善成像光谱仪的检测能力,在不改变硬件结构的情况下,采用光谱细化最优化的新方法,利用液晶可调谐滤光片式成像光谱仪,取得了入射光近似光谱数据,进行了理论分析和实验验证。结果表明,在3组数值仿真数据中,相较于成像光谱仪测量光谱,该方法得到的近似光谱与入射光真实光谱的光谱强度差的标准差分别减小了79.3%,68.3%和58.8%;在两组实验数据中,标准差分别减小了84.4%和60.7%;求解得到的近似光谱与入射光真实光谱的近似程度得到了显著提高,较好地分离了相隔较近的光谱峰。这一研究改善了成像光谱仪的光谱检测能力。Abstract: In order to improve spectral resolution of an imaging spectrometer without changing its hardware structure, a novel method of spectral refinement was adopted. An imaging spectrometer with liquid crystal tunable filter was used to obtain the approximate spectral data of the incident light for theoretical analysis and experimental verification. In three sets of numerical simulation data, the standard deviations of the spectral intensity difference between the approximate spectra and the true spectral were reduced by 79.3%, 68.3% and 58.8%, compared with the spectra measured with an imaging spectrometer. In two sets of experiment data, the standard deviations were decreased by 84.4% and 60.7%. The results show that the approximation degree between the approximate spectrum and the real spectrum of the incident light is improved and the spectral peaks are separated very well. It is helpful to improve the spectral detection capability of imaging spectrometers.
-
Keywords:
- spectroscopy /
- spectral resolution /
- optimization method /
- imaging spectrometer
-
-
Table 1 Comparison of standard deviation of spectral intensity difference after numerical simulation
standard deviation of difference between Ei(λ) and Eo(α) standard deviation of difference between Ei(λ) and Ei′(λ) bimodal (non-overlapping) spectrum 6.28×103 1.30×103 bimodal (overlapping) spectrum 5.02×103 1.59×103 tri-peak spectrum 5.20×103 2.14×103 Table 2 Comparison of standard deviation of spectral intensity difference after experiment
standard deviation of difference between Ei(λ) and Eo(α) standard deviation of difference between Ei(λ) and Ei′(λ) the continuous spectrum 6.68×103 1.04×103 the coupled spectrum 5.91×103 2.32×103 -
[1] ZHENG C Y, GUO Zh H, JIN L. Measurement of total viable count on chilled mutton surface based on hyper spectral imaging technique[J]. Laser Technology, 2015, 39(2):284-288(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SPKJ201420018.htm
[2] DU P Sh, GUO J, DONG Q M. Application of liquid crystal tunable filter in multispectral imager[J]. Infrared, 2007, 28(11):4-8(in Chinese).
[3] SU L J. Study on the beam splitting technology of the imaging spectroscopy[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, 2006: 37-56(in Chinese).
[4] KOPP G, DERKS M, GRAHAM A. Liquid crystal tunable birefringent filters[J]. Proceedings of the SPIE, 1996, 2830:345-350. DOI: 10.1117/12.256127
[5] MILLER A P J, HOYT C C. Multispectral imaging with a liquid crystal tunable filter[J]. Proceedings of the SPIE, 1995, 2345:354-365. DOI: 10.1117/12.198889
[6] DONG Y. Study on resolution enhancement of Fourier transform spectroscopy[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, 2001: 17-38(in Chinese).
[7] DONG Y, XIANG L B, ZHAO B Ch. Theoretical study on Fourier self-deconvolution (FSD) of fourier transform spectrum[J]. Acta Photonica Sinica, 2002, 31(7):841-846(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GZXB200207013.htm
[8] WEI H L, WU Ch J, MA Zh J, et al. A new method for improving the measurement spectral resolution of atmospheric absorption spectra[J]. Acta Optica Sinica, 2002, 22(2):165-169(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB200202008.htm
[9] KAWATA S, MINAMI K, MINAMI S. Superresolution of Fourier transform spectroscopy data by the maximum entropy method.[J]. Applied Optics, 1983, 22(22):3593-3601. DOI: 10.1364/AO.22.003593
[10] XIANG L B, ZHAO B Ch. A new method for supperresolution of Fourier transform spectra[J]. Acta Optica Sinica, 1995, 15(11):1529-1533(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB511.010.htm
[11] KAUPPINEN J K, MOFFATT D J, HOLLBERG M R, et al. A new line-narrowing procedure based on Fourier self-deconvolution, maximum entropy, and linear prediction[J]. Applied Spectroscopy, 1991, 45(3):411-416. DOI: 10.1366/0003702914337155
[12] SU G, XU R, WANG J Y. Simulation of resolution enhancing algorithms for spectra measured by AOTF[J]. Infrared, 2016, 37(10):23-29(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-HWAI201610005.htm
[13] ZOU M Y. Deconvolution and signal recovery[M]. Beijing:National Defence Industry Press, 2001:32-42(in Chinese)
[14] WU H X. The study of numerical algorithms for Fredholm integral equations of the first kind[D]. Xi'an: Xi'an University of Technology, 2008: 21-32(in Chinese)
[15] LIANG F. Research on numerical solution methods for some inverse problems[D]. Shantou: Shantou University, 2010: 56-63(in Chinese)
[16] NOCEDAL J, WRIGHT S J. Numerical optimization[M]. Berlin, Germany:Springer, 2006:8-13.
[17] FENG F, WANG F B, XIE F, et al. Implementation of spectral overlap resolution based on wavelet transforms and Gaussian fitting[J]. Acta Photonica Sinica, 2015, 44(6):630001(in Chinese). DOI: 10.3788/gzxb
-
期刊类型引用(7)
1. 胡泽雄,游利兵,寸超,王宏伟,范军,王琪,张艳琳,方晓东. 准分子激光低抖动延时同步系统. 量子电子学报. 2023(01): 69-78 . 百度学术
2. 龚玮玮,张进,张丽伟. 基于嵌入式技术的准分子激光器智能控制系统. 激光杂志. 2021(10): 181-185 . 百度学术
3. 王晨,梁勖,林颖,方晓东. MOPA结构准分子激光同步触发设计. 红外与激光工程. 2021(11): 165-170 . 百度学术
4. 朱志坚,薛竣文,王玉珂,孙鲁,苏秉华. 基于MOPA结构的1064nm单频光纤激光器. 激光技术. 2019(06): 800-803 . 本站查看
5. 王景景,符志军. 激光陀螺仪的机械抖动控制技术分析和研究. 激光杂志. 2019(12): 118-122 . 百度学术
6. 谢正兰,万川梅. 单向链式网络的激光同步技术研究. 激光杂志. 2018(03): 146-150 . 百度学术
7. 徐学红,栗科峰. 激光接收器的抖动抑制优化控制方法. 激光杂志. 2017(06): 136-139 . 百度学术
其他类型引用(2)