-
本实验中所使用的材料为∅8mm的圆柱形铸态镍基K418合金和轧制态的0Cr18Ni9,厚度为1.6mm,化学成分分别如表 1和表 2所示。实验中所使用的激光器为IPG-4000型光纤激光器,最大输出功率为4000W。激光焊接头准直距离为150mm,聚焦距离为200mm,控制系统使用的是公司自主研发的Page Admin (PA)系统,保护气体为高纯氩气。工件配合间隙小于0.03mm,焊接设备重复定位精度高于0.02mm,焊接最高速率为30m/min。利用线切割沿起弧收弧处和垂直于起弧收弧处进行焊缝截面取样,利用铣床铣去表面1.1mm进行层面取样。样品利用100目~2000目的砂纸进行打磨后进行抛光,并利用王水进行腐蚀。通过光学显微镜观察焊缝宏观形貌,利用扫描电镜观察断口形貌。
Table 1. Chemical composition of K418 alloy
elements C Cr Mo Al Ti Nb Fe Si Ni mass fraction 0.0008~0.0016 0.115~0.135 0.038~0.048 0.055~0.064 0.005~0.01 0.018~0.025 ≤0.01 ≤0.005 balance Table 2. Chemical composition of 0Cr18Ni9 alloy
elements C Si Mn S P Cr Ni Fe mass fraction ≤0.0008 ≤0.01 ≤0.02 ≤0.0003 ≤0.0005 0.18~0.20 0.082~0.105 balance
激光焊接工艺对K418与0Cr18Ni9焊接接头性能的影响
Effect of laser welding technology on mechanical properties of K418 and 0Cr18Ni9 weld joints
-
摘要: 为了研究激光焊接工艺对K418与0Cr18Ni9异种金属焊接接头性能的影响,采用金相显微镜对焊缝的金相组织和形貌进行了分析,评价了焊缝及周边的硬度和强度。结果表明,在激光焊接K418高温合金与0Cr18Ni9时由于母材热物性参量存在较大的差异,为保证焊缝质量,激光光斑应偏向0Cr18Ni9合金一侧;为了防止热裂纹和液化裂纹的产生,应该尽量延长熔池凝固时间同时减少热影响的热输入;当保护气体流量为12L/min时,对焊缝的保护效果最好,与Ar2相比N2能有效减少焊缝中气孔的含量,但也会降低焊缝性能;焊缝的硬度值位于两母材硬度之间,焊接接头的强度约为母材的89%。采用合适的激光焊接工艺可以实现K418合金与0Cr18Ni9较好的焊接效果。Abstract: In order to study effect of laser welding on the properties of dissimilar metal welding joints of K418 and 0Cr18Ni9, microstructure and morphology of the weld were analyzed by using a metallographic microscope. The hardness and strength of weld seams and their surrounding area were evaluated. The results show that when laser welding of K418 superalloy and 0Cr18Ni9, there are great differences in thermal parameters of the base metal. In order to guarantee weld quality, laser spot should be biased on the side of 0Cr18Ni9 alloy. In order to prevent thermal cracks and liquation cracks, coagulation time of the melted pool should be prolonged as far as possible and heat input with heat effect should be reduced simultaneously. The protection of weld seam is the best when protection gas flow rate is 12L/min. Compared with Ar2, N2 can effectively reduce the porosity in weld seams, and it also reduces the weld performance. The hardness of the weld is between the hardness of two base materials. The strength of the weld joint is about 89% of that of the base metal. Good welding quality of K418 alloy and 0Cr18Ni9 can be achieved by adopting suitable laser welding process.
-
Key words:
- laser technique /
- laser welding /
- welding process /
- crack /
- pore /
- mechanical property
-
Table 1. Chemical composition of K418 alloy
elements C Cr Mo Al Ti Nb Fe Si Ni mass fraction 0.0008~0.0016 0.115~0.135 0.038~0.048 0.055~0.064 0.005~0.01 0.018~0.025 ≤0.01 ≤0.005 balance Table 2. Chemical composition of 0Cr18Ni9 alloy
elements C Si Mn S P Cr Ni Fe mass fraction ≤0.0008 ≤0.01 ≤0.02 ≤0.0003 ≤0.0005 0.18~0.20 0.082~0.105 balance -
[1] TOLLETT B. Welding with laser powder fusion and plasma wire feed systems[J]. Engine Yearbook, 2003, 10(3):84-89. [2] MONTAZERI M, GHAINI F M.The liquation cracking behavior of In738LC superalloy during low power Nd:YAG pulsed laser welding[J].Materials Characterization, 2012, 67(6):65-73. [3] GAO X L. Welding process manual[M]. Beijing:Machinery Industry Press, 1992:42-43(in Chinese). [4] AO S S, LUO Zh, SHAN P. Microstructure of inconel 601 nickel-based superalloy laser welded joint[J]. The Chinese Journal of Nonferrous Metals 2015, 25(8):2099-2107(in Chinese). [5] GUO L, WANG F, ZHANG Q M, et al. Research of techniques of laser-MIG hybrid welding of 304 stainless steel[J]. Laser Techology, 2013, 37(6):781-785(in Chinese). [6] WANG D D, YU Sh F, LIU Y. Effect of laser power on performance of dissimilar joints between Cu-Ni coated low carbon steel and stainless steel[J]. Laser Techology, 2016, 40(6):806-809(in Chinese). [7] LEI Zh L, DONG Zh J, CHEN Y B, et al. Effect of heat input on the microstructures and mechanical properties of laser welded Ti2AlNb alloys[J].Rare Metal Materials and Engineering, 2014, 43(3)579-584(in Chinese). [8] YAN F, WANG Ch M, HU X Y. Study of the process of laser welding for low expansion superalloy GH909[J]. Electric Welding Machine, 2014, 44(9):6-9(in Chinese). [9] KELLY T J. Welding metallurgy of investment cast nickel-based superalloy[C]//Proceedings from Weldability of Materials Conference. New York, USA: ACM Press, 1990: 151-157. [10] LINGENFELTER A C. Welding metallurgy of nickel alloys in gas turbine components[C]//Proceedings from Materials Solutions'97 on Joining and Repair of Gas Turbine Components. New York, USA: IEEE, 1997: 3-6. [11] HENDERSON M B, ARRELL D, LARSSON R, et al. Nickel based superalloy welding practices for industrial gas turbine applications[J].Science and Technology of Welding and Joining, 2004, 9(1):13-21. doi: 10.1179/136217104225017099 [12] DYE D, HUNZIKER O, REED R C. Numerical analysis of the weldability of superalloys[J]. Acta Materialia, 2001, 49(4):683-697. doi: 10.1016/S1359-6454(00)00361-X [13] OJO O A, CHATURVEDI M C. On the role of liquated γ' precipitates in weld heat affected zone microfissuring of a nickel-based superalloy[J]. Materials Science and Engineering, 2005, A403(1/2):77-86. [14] OJO O A, RICHARDS N L, CHATURVEDI M C. Liquation of various phases in HAZ during welding of cast Inconel 738LC[J]. Materials Science and Technology, 2004, 20(8):1027-1034. doi: 10.1179/026708304225019948 [15] OJO O A, RICHARDS N L, CHATURVEDI M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy[J]. Scripta Materialia, 2004, 50(5):641-646. doi: 10.1016/j.scriptamat.2003.11.025 [16] PANG M, YU G, WANG H H, et al.Microstructure and mechanical properties of K418 and 42CrMo dissimilar metal laser welding[J]. Transactions of the China Welding Institution, 2008, 29(2):85-88(in Chinese). [17] SEKHAR N C, REED R C. Power beam welding of thick section nickelbase superal loys[J].Science and Technology of Welding and Joining, 2002, 7(2):77-87. doi: 10.1179/136217102225002628 [18] LIU X B, YU G, PANG M, et al. Laser welding of superalloy K418 to 42CrMo steel[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(3):444-448(in Chinese).