-
已报道的制备聚合物光纤光栅的激光器有很多种,如二倍频光参量振荡(optical parametric oscillation, OPO)激光器[5, 28]、钛蓝宝石飞秒激光器[29]、连续HeCd激光器[30-36]、KrF准分子激光器[37-39]、CO2激光器[40]和三倍频Nd: YAG激光[41]等,表 1中列出了它们之间的比较。不论是PMMA, TOPAS, CYTOP和PC聚合物光纤布喇格光栅,还是渐变折射率、梯度折射率和微结构聚合物光纤布喇格光栅的制备,大量的文献中以325nm连续HeCd激光器作为刻蚀光源,而石英光纤光栅批量生产采用的248nm KrF准分子激光器于2015年才首次成功用于PMMA聚合物光纤布喇格光栅的制备。
表 1 聚合物光纤光栅制备的激光器
激光器 波长 功率(密度) 光纤光栅类型 制备时间/反射率 参考文献 二倍频OPO 325nm — PMMA POFBG —/80% [5] 二倍频OPO 325nm — PMMA POFBG —/28dB [28] 钛蓝宝石激光放大器 800nm, 120fs — 多模POGBG [29] HeCd 325nm 30mW PMMA mPOFBG 6.83min/26dB [30] KrF准分子 248 nm 3mW PMMA mPOFBG 0.33min/20dB [37] HeCd 325nm 30mW PMMA mPOF LPG 7min/20dB [31] HeCd 325nm 30mW PMMA LPG 5.3min/15dB [32] HeCd 325nm 30mW PMMA TFBG —/12% [33] CO2 10μm — PMMA mPOF LPG —/25dB,13dB [40] 三倍频Nd:YAG 355nm 677mW·cm-2 单模和多模POFBG 16min/25% [41] HeCd 325nm 5W·cm-2 TOPAS mPOFBG 338min/20dB [45] HeCd 325nm 30mW TOPAS mPOFBG —/20dB [46] HeCd 325nm 6mW TOPAS POFBG 4min/30dB [47] 飞秒激光系统 517nm, 220fs — 多模CYTOP POFBG —/5.5dB [43], [44] HeCd 325nm 4mW PC mPOFBG 4min/25dB [48] 和石英光纤光栅的制备类似,聚合物光纤布喇格光栅的制备以相位掩模法[29-30, 33-35, 37-39]为主,也有改进的相位掩模法[5, 30, 41]和扫描相位掩模法[33, 36],而聚合物长周期光纤光栅的制备以逐点写入法[40, 42-44]为主。
表 1中,mPOFBG为微结构聚合物光纤布喇格光栅(microstructured polymer optical fiber Bragg gratings);TFBG为倾斜光纤布喇格光栅(tilted fiber Bragg gratings);mPOF为微结构聚合物光纤(microstructured polymer optical fibers)。
聚合物光纤光栅制备进展
Progress in fabrication of polymer optical fiber gratings
-
摘要: 聚合物光纤光栅不仅具有体积小、质量轻、柔软、成本低等诸多优点,还因聚合物自身的特性而具有灵敏度高、响应范围宽、生物兼容性等优良特性。首先梳理了聚合物光纤的光敏性机理,概述了聚合物光纤光栅制备的刻蚀光源和方法;其次根据聚合物光纤的组成材料,概述了多种聚合物光纤光栅的制备进展和性能指标,包括聚甲基丙烯酸甲酯、环烯烃共聚物TOPAS、透明无定物氟聚合物CYTOP和聚碳酸酯。总之,目前聚甲基丙烯酸甲酯聚合物光纤光栅的研究占主导,而基于新型材料的聚合物光纤光栅因自身独特的优势也逐渐受到重视。Abstract: Polymer fiber gratings have many advantages, such as small size, light weight, softness and low cost. Due to the characteristics of polymer itself, it also has high sensitivity, wide response range and good biocompatibility. Firstly, the photosensitivity mechanism of polymer optical fiber was studied, and the etched light source and method for preparing polymer fiber gratings were summarized. Secondly, according to the composition material of polymer optical fiber, the progress in preparation and the performance of polymer fiber gratings, including polymethyl methacrylate, TOPAS, CYTOP and poly-carbonate were overviewed. At present, the study on polymethyl methacrylate polymer fiber gratings is dominant. Polymer fiber gratings based on new materials have been paid more and more attention due to their unique advantages.
-
图 1 PMMA光解简化过程[12]
图 2 紫外激光诱导4-stilbenemethanol的异构化[9]
图 6 TOPAS聚合物光纤端面结构及FBG的反射谱[47]
a—聚合物光纤端面及折射率分布b—聚合物FBG的反射谱
图 7 CYTOP多模POFBG的反射谱[44]
图 8 PC微结构聚合物光纤端面结构及FBG的反射谱[48]
表 1 聚合物光纤光栅制备的激光器
激光器 波长 功率(密度) 光纤光栅类型 制备时间/反射率 参考文献 二倍频OPO 325nm — PMMA POFBG —/80% [5] 二倍频OPO 325nm — PMMA POFBG —/28dB [28] 钛蓝宝石激光放大器 800nm, 120fs — 多模POGBG [29] HeCd 325nm 30mW PMMA mPOFBG 6.83min/26dB [30] KrF准分子 248 nm 3mW PMMA mPOFBG 0.33min/20dB [37] HeCd 325nm 30mW PMMA mPOF LPG 7min/20dB [31] HeCd 325nm 30mW PMMA LPG 5.3min/15dB [32] HeCd 325nm 30mW PMMA TFBG —/12% [33] CO2 10μm — PMMA mPOF LPG —/25dB,13dB [40] 三倍频Nd:YAG 355nm 677mW·cm-2 单模和多模POFBG 16min/25% [41] HeCd 325nm 5W·cm-2 TOPAS mPOFBG 338min/20dB [45] HeCd 325nm 30mW TOPAS mPOFBG —/20dB [46] HeCd 325nm 6mW TOPAS POFBG 4min/30dB [47] 飞秒激光系统 517nm, 220fs — 多模CYTOP POFBG —/5.5dB [43], [44] HeCd 325nm 4mW PC mPOFBG 4min/25dB [48] -
[1] HILL K O, FUJII Y, JOHNSON D C, et al. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10):647-649. doi: 10.1063/1.89881 [2] CHU Zh Zh, YOU L B, WANG Q Sh, et al. Development of optical fiber sensing technology for harmful gases detecting[J]. Transducer and Microsystem Technologies, 2016, 35(9):1-4(in Chinese). [3] PENG G D, CHU P L. Recent research on polymer optical fiber photosensitivity and highly tunable optical fibre Bragg grating[J].Proceedings of the SPIE, 2000, 4110:123-138. doi: 10.1117/12.404773 [4] JOHNSON I P. Grating deices in polymer optical fibre[D]. Birmingham, UK: Aston University, 2012: 16-44. [5] XIONG Z, PENG G D, WU B, et al. Highly tunable Bragg gratings in single-mode polymer optical fibers[J]. IEEE Photonics Technology Letters, 1999, 11(3):352-354. doi: 10.1109/68.748232 [6] HAND D P, RUSSELL P S J. Photoinduced refractive-index changes in germanosilicate fibers[J]. Optics Letters, 1990, 15(2):102-104. doi: 10.1364/OL.15.000102 [7] POUMELLEC B, GUENOT P, RIANT I, et al. UV induced densification during Bragg grating inscription in Ge:SiO2 preforms[J]. Optical Materials, 1995, 4(4):441-449. doi: 10.1016/0925-3467(94)00114-6 [8] LEMAIRE P J, ATKINS R M, MIZRAHI V, et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electronics Letters, 1993, 29(13):1191-1193. doi: 10.1049/el:19930796 [9] YU J M, TAO X M, TAM H Y. Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings[J]. Optics Letters, 2004, 29(2):156-158. doi: 10.1364/OL.29.000156 [10] ZOUBIR A, LOPEZ C, RICHARDSON M, et al. Femtosecond laser fabrication of tubular waveguides in poly (methyl methacrylate)[J]. Optics Letters, 2004, 29(16):1840-1842. doi: 10.1364/OL.29.001840 [11] LIPPERT T, DICKINSON J T. Chemical and spectroscopic aspects of polymer ablation:special features and novel directions[J]. Chemical Reviews, 2003, 103(2):453-486. doi: 10.1021/cr010460q [12] WOCHNOWSKI C, METEV S, SEPOLD G. UV-laser-assisted modification of the optical properties of polymethylmethacrylate[J]. Applied Surface Science, 2000, 154:706-711. [13] CHOI J O, MOORE J A, CORELLI J C, et al. Degradation of poly (methylmethacrylate) by deep ultraviolet, X-ray, electron beam, and proton beam irradiations[J]. Journal of Vacuum Science & Technology:Microelectronics Processing and Phenomena, 1988, B6(6):2286-2289. [14] SRINIVASAN R, BRAREN B, CASEY K G. Ultraviolet laser ablation and decomposition of organic materials[J]. Pure and Applied Chemistry, 1990, 62(8):1581-1584. doi: 10.1351/pac199062081581 [15] KADA T, HIRAMATSU T, OGINO K, et al. Fabrication of refractive index profiles in poly (methyl methacrylate) using ultraviolet rays irradiation[J]. Japanese Journal of Applied Physics, 2002, 41(2R):876-880. [16] BOWDEN M J, CHANDROSS E A, KAMINOW I P. Mechanism of the photoinduced refractive index increase in polymethyl methacrylate[J]. Applied Optics, 1974, 13(1):112-117. doi: 10.1364/AO.13.000112 [17] TOMLINSON W J, KAMINOW I P, CHANDROSS E A, et al. Photoinduced refractive index increase in poly (methylmethacrylate) and its applications[J]. Applied Physics Letters, 1970, 16(12):486-489. doi: 10.1063/1.1653076 [18] ROBERTSON C G, WILKES G L. Refractive index:a probe for monitoring volume relaxation during physical aging of glassy polymers[J]. Polymer, 1998, 39(11):2129-2133. doi: 10.1016/S0032-3861(97)00508-9 [19] KOPIETZ M, LECHNER M D, STEINMEIER D G, et al. Light-induced refractive index changes in polymethylmethacrylate (PMMA) blocks[J]. Polymer Photochemistry, 1984, 5(1/6):109-119. [20] ESTLER R C, NOGAR N S. Mass spectroscopic identification of wavelength dependent UV laser photoablation fragments from polymethylmethacrylate[J]. Applied Physics Letters, 1986, 49(18):1175-1177. doi: 10.1063/1.97406 [21] GEORGIOU S, KAUTEK W, KRUGER J, et al. Polymers and light[M]. Heidelberg, Germany:Springer Science & Business Media, 2004:20-40. [22] LEKISHVILI N, NADAREISHVILI L, ZAIKOV G, et al. Polymers and polymeric materials for fiber and gradient optics[M]. Boca Raton, USA:Chemical Rubber Company Press, 2002:15-50. [23] LIU H Y, LIU H B, PENG G D, et al. Observation of type Ⅰ and type Ⅱ gratings behavior in polymer optical fiber[J]. Optics Communications, 2003, 220(4):337-343. [24] KALLI K, DOBB H L, WEBB D J, et al. Development of an electrically tuneable Bragg grating filter in polymer optical fibre operating at 1.55μm[J]. Measurement Science and Technology, 2007, 18(10):3155. [25] SCHAFFER C B. Interaction of femtosecond laser pulses with transparent materials[D]. Cambridge, USA: Harvard University, 2001: 27-29. [26] BAUM A, SCULLY P J, BASANTA M, et al. Photochemistry of refractive index structures in poly (methyl methacrylate) by femtosecond laser irradiation[J]. Optics Letters, 2007, 32(2):190-192. doi: 10.1364/OL.32.000190 [27] SCULLY P J, JONES D, JAROSZYNSKI D A. Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings[J]. Journal of Optics, 2003, A5(4):S92-S96. [28] LIU H Y, PENG G D, CHU P L. Polymer fiber Bragg gratings with 28dB transmission rejection[J]. IEEE Photonics Technology Letters, 2002, 14(7):935-937. doi: 10.1109/LPT.2002.1012390 [29] JIN Zh K. Peparation of the grating structure in polymer optical fiber by femtosecond laser[D].Changchun: Jilin University, 2012: 40-54(in Chinese). [30] BUNDALO I L, NIELSON K, MARKOS C, et al. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes[J]. Optics Express, 2014, 22(5):5270-5276. doi: 10.1364/OE.22.005270 [31] KOWAL D, STATKIEWICZ-BARABACH G, MERGO P, et al. Microstructured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam[J]. Optics Letters, 2014, 39(8):2242-2245. doi: 10.1364/OL.39.002242 [32] KOWAL D, STATKIEWICZ-BARABACH G, MERGO P, et al. Inscription of long period gratings using an ultraviolet laser beam in the diffusion-doped microstructured polymer optical fiber[J]. Applied Optics, 2015, 54(20):6327-6333. doi: 10.1364/AO.54.006327 [33] HU X, PUN C F J, TAM H Y, et al. Tilted Bragg gratings in step-index polymer optical fiber[J]. Optics Letters, 2014, 39(24):6835-6838. doi: 10.1364/OL.39.006835 [34] BUNDALO I L, NIELSEN K, BANG O. Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers[J]. Optics Express, 2015, 23(3):3699-3707. doi: 10.1364/OE.23.003699 [35] SÁEZ-RODRÍGUEZ D, NIELSEN K, RASMUSSEN H K, et al. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core[J]. Optics Letters, 2013, 38(19):3769-3772. doi: 10.1364/OL.38.003769 [36] HU X, PUN C F J, TAM H Y, et al. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber[J]. Optics Express, 2014, 22(15):18807-18817. doi: 10.1364/OE.22.018807 [37] OLIVEIRA R, BILRO L, NOGUEIRA R. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds[J]. Optics Express, 2015, 23(8):10181-10187. doi: 10.1364/OE.23.010181 [38] KOERDT M, KIBBEN S, HESSELBACH J, et al. Fabrication and characterization of Bragg gratings in a graded-index perfluorinated polymer optical fiber[J]. Procedia Technology, 2014, 15:138-146. doi: 10.1016/j.protcy.2014.09.065 [39] KOERDT M, KIBBEN S, BENDIG O, et al. Fabrication and characterization of Bragg gratings in perfluorinated polymer optical fibers and their embedding in composites[J]. Mechatronics, 2016, 34:137-146. doi: 10.1016/j.mechatronics.2015.10.005 [40] BUNDALO I L, LWIN R, LEON-SAVAL S, et al. All-plastic fiber-based pressure sensor[J]. Applied Optics, 2016, 55(4):811-816. doi: 10.1364/AO.55.000811 [41] LUO Y, ZHANG Q, LIU H, et al. Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355nm nanosecond pulsed laser[J]. Optics Letters, 2010, 35(5):751-753. doi: 10.1364/OL.35.000751 [42] CHEN R. Study on sensing characteristics of polymer long period fiber gratings[D]. Hefei: University of Science and Technology of China, 2006: 48-54(in Chinese). [43] LACRAZ A, POLIS M, THEODOSIOU A, et al. Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber[J]. IEEE Photonics Technology Letters, 2015, 27(7):693-696. doi: 10.1109/LPT.2014.2386692 [44] STAJANCA P, LACRAZ A, KALLI K, et al. Strain sensing with femtosecond inscribed FBGs in perfluorinated polymer optical fibers[C]//Brussels, Belgium: SPIE Photonics Europe, 2016: 989911. [45] YUAN W, KHAN L, WEBB D J, et al. Humidity insensitive TOPAS polymer fiber Bragg grating sensor[J]. Optics Express, 2011, 19(20):19731-19739. doi: 10.1364/OE.19.019731 [46] MARKOS C, STEFANI A, NIELSEN K, et al. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees[J]. Optics Express, 2013, 21(4):4758-4765. doi: 10.1364/OE.21.004758 [47] WOYESSA G, FASANO A, STEFANI A, et al. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors[J]. Optics Express, 2016, 24(2):1253-1260. doi: 10.1364/OE.24.001253 [48] FASANO A, WOYESSA G, STAJANCA P, et al. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors[J]. Optical Materials Express, 2016, 6(2):649-659. doi: 10.1364/OME.6.000649 [49] LIU H Y, PENG G D, CHU P L, et al. Photosensitivity in low-loss perfluoropolymer (CYTOP) fibre material[J]. Electronics Letters, 2001, 37(6):347-348. doi: 10.1049/el:20010216 [50] CHENG X Sh. Fabrication and sensing characteristics of polymer bragg fiber gratings[D]. Hefei: University of Science and Technology of China, 2011: 31-84(in Chinese). [51] LIU H Y, PENG G D, CHU P L. Thermal tuning of polymer optical fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2001, 13(8):824-826. doi: 10.1109/68.935816 [52] STEFANI A, YUAN W, MARKOS C, et al. Narrow bandwidth 850nm fiber Bragg gratings in few-mode polymer optical fibers[J]. IEEE Photonics Technology Letters, 2011, 23(10):660-662. doi: 10.1109/LPT.2011.2125786 [53] STEFANI A, ANDRESEN S, YUAN W, et al. High sensitivity polymer optical fiber-Bragg-grating-based accelerometer[J]. IEEE Photonics Technology Letters, 2012, 24(9):763-765. doi: 10.1109/LPT.2012.2188024 [54] ZHANG W, WEBB D J. PMMA based optical fiber bragg grating for measuring moisture in transformer oil[J]. IEEE Photonics Technology Letters, 2016, 28(21):2427-2430. doi: 10.1109/LPT.2016.2598145 [55] LIU H Y, PENG G D, CHU P L. Thermal stability of gratings in PMMA and CYTOP polymer fibers[J]. Optics Communications, 2002, 204(1):151-156.