高级检索

Zn中间层对镁/铝异种金属激光焊接的影响

麻丁龙, 牛锐锋, 赵宏刚, 张俊华, 朱维兴, 王鹏飞

麻丁龙, 牛锐锋, 赵宏刚, 张俊华, 朱维兴, 王鹏飞. Zn中间层对镁/铝异种金属激光焊接的影响[J]. 激光技术, 2017, 41(6): 858-861. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.018
引用本文: 麻丁龙, 牛锐锋, 赵宏刚, 张俊华, 朱维兴, 王鹏飞. Zn中间层对镁/铝异种金属激光焊接的影响[J]. 激光技术, 2017, 41(6): 858-861. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.018
MA Dinglong, NIU Ruifeng, ZHAO Honggang, ZHANG Junhua, ZHU Weixing, WANG Pengfei. Effect of Zn interlayer on laser welding of Mg/Al dissimilar metal[J]. LASER TECHNOLOGY, 2017, 41(6): 858-861. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.018
Citation: MA Dinglong, NIU Ruifeng, ZHAO Honggang, ZHANG Junhua, ZHU Weixing, WANG Pengfei. Effect of Zn interlayer on laser welding of Mg/Al dissimilar metal[J]. LASER TECHNOLOGY, 2017, 41(6): 858-861. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.018

Zn中间层对镁/铝异种金属激光焊接的影响

基金项目: 

中广核集团尖峰计划资助项目 R-2016S2RE12TF

详细信息
    作者简介:

    麻丁龙(1990-), 男, 硕士研究生, 主要研究方向为特种焊接技术

    通讯作者:

    牛锐锋, E-mail:niurf@xaut.edu.cn

  • 中图分类号: TG456.7

Effect of Zn interlayer on laser welding of Mg/Al dissimilar metal

  • 摘要: 为了研究激光焊接镁/铝异种金属的工艺方法,采用4kW光纤激光器对AZ31B镁合金和5083铝合金进行了添加Zn中间层的焊接试验,得出了Zn中间层对镁/铝异种金属激光焊接接头的影响机理。结果表明,焊接接头组织较为均匀,热影响区不明显;镁侧熔合区及焊缝中心部位以α-Mg和α-Mg+Mg17Al12共晶组织为主,底部为Al固溶体及Mg/Al,Mg/Zn间化合物组成的混合组织;随着Zn中间层厚度的增加,焊缝底部生成的Mg/Zn化合物数量增多,Mg/Al间化合物数量明显减少,且连续分布的状态得到改善,剪切断裂由解理向混合断裂方式过渡;当中间层厚度为0.1mm时,拉剪强度达到最大值25.47MPa。该研究对提升镁/铝异种金属焊接接头的强度是有帮助的。
    Abstract: In order to study the laser welding process of magnesium/aluminum dissimilar metals, the experiment was conducted on AZ31B magnesium alloy and 5083 aluminum alloy with Zn interlayer by using 4kW fiber laser. The influence mechanism of Zn interlayer on Mg/Al dissimilar metal laser welding joint was obtained. The results show that the microstructure of the weld is uniform, and the heat affected zone is not obvious. The magnesium side and the center are mainly composed of α-Mg and α-Mg+Mg17Al12 eutectic structure, and the bottom of weld is the mixture of Al, Mg/Al and Mg/Zn compounds. With the thickness of Zn increased, at the bottom of the weld, the formation of Mg/Zn compounds increase, the Mg/Al compounds reduce and the distribution of microstructure is improved. The shear fracture mode transforms from cleavage to mixed manner. When Zn interlayer is 0.1mm, the shear strength reaches the maximum 25.47MPa. The study is helpful in improving the strength of the Mg/Al dissimilar metal welded joints.
  • Figure  1.   Laser equipment and the welding robot

    Figure  2.   Schematic diagram of laser welding

    Figure  3.   Macroscopic morphology of the welding joint

    a—surface b—fracture

    Figure  4.   Morphology of cross section of the welding joint with different thickness of Zn interlayers

    a—0.05mm b—0.1mm c—0.15mm d—SEM image of A

    Figure  5.   Microstructure of different welding zones

    a—the Mg side with 0.05mm Zn interlayer b—the center with 0.05mm Zn interlayer c—the bottom with 0.05mm Zn interlayer d—the bottom with 0.1mm Zn interlayer e—the bottom with 0.15mm Zn interlayer

    Figure  6.   SEM images of the welding zone

    a—the Mg side b—the bottom

    Figure  7.   XRD results of cross section of the welding joint

    Figure  8.   Fracture morphology of Zn interlayer with different thicknesses

    a—0.05mm macroscopic b—0.05mm microstropic c—0.1mm micro-stropic d—0.15mm microstropic

    Table  1   Chemical compositions (mass fraction) of aluminum 5083 and magnesium AZ31B

    material Mg Al Zn Si Fe Cu Mn Ti Ca Cr
    5083 0.045 balance 0.0025 0.004 0.004 0.001 0.006 0.015 0.002
    AZ31B balance 0.0319 0.0081 0.0002 0.00005 0.0005 0.00334 0.0004
    下载: 导出CSV

    Table  2   EDS results at different locations (atom fraction)

    position Mg Al Zn
    1 0.7726 0.1910 0.0364
    2 0.6379 0.2853 0.0768
    3 0.5302 0.3389 0.1309
    4 0.5266 0.2838 0.1896
    5 0.1904 0.5899 0.2197
    6 0.3846 0.5161 0.0993
    下载: 导出CSV
  • [1]

    WANG H, LIU L M, LIU X J. Diffusion behaviour analysis of TIG welded joint between dissimilar materials Mg and Al[J].Transactions of China Welding Institution, 2005, 26(7):5-8(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjxb200507002

    [2]

    LIU X J. Study on fusion weldability to dissimilar alloys of magnesium alloy and aluminum alloy[D].Dalian: Dalian University of Technology, 2007: 1-3(in Chinese).

    [3]

    MENG Q S. Elementary metal weldability[M].Beijing:Chemical Industry Press, 2010:1-5(in Chinese).

    [4]

    ZENG R Ch, KE W, XU Y B, et al. Recent development and application of magnesium alloys[J]. Acta Metallurgica Sinica, 2001, 37(7):672-685(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSXB200107000.htm

    [5]

    LIU J A, XIE Sh Sh. Application and development of aluminium alloys[M]. Beijing:Metallurgical Industry Press, 2004:14-15(in Chinese).

    [6]

    LI Y J, WANG J, LIU P. Welding and application of dissimilar materials[M]. Beijing:Science Press, 2004:170-171(in Chinese).

    [7]

    YU G, ZHAO Sh S, ZHANG Y J, et al. Research on key issues of laser welding of dissimilar metal[J]. Chinese Journal of Lasers, 2009, 32(6):261-268(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg200902001

    [8]

    MA J, WANG J. Microstructure and property of laser butt welded joint of Mg-Al dissimilar metal[J]. Hot Working Technology, 2014, 17(9):211-213(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-SJGY201417064.htm

    [9]

    GU J J, LIU X W. Study on friction stir welding of AZ31B/LY12[J]. Hot Working Technology, 2008, 37(1):52-53(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy200801019

    [10]

    WANG X N, LIANG Zh Y, CHEN K, et al. A Review on dissimilar friction-stir welding between aluminum alloys and magnesium alloys[J]. Shanghai Nonferrous Metals, 2011, 32(1):32-40(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shysjs201101010

    [11]

    GUO W. Research on laser welding characterist of Mg-Fe with Al as interlayer and interface reaction mechanism[D]. Harbin: Harbin Institute of Technology, 2013: 16-35(in Chinese).

    [12]

    ZHANG H T, DAI X Y, FENG J C. Joining of aluminum and magnesium via pre-roll-assisted a-TIG welding with Zn interlayer[J]. Materials Letters, 2014, 122(5):49-51. https://www.sciencedirect.com/science/article/abs/pii/S0167577X14001967

    [13]

    CHEN G Y, LI Ch Z, ZHOU C, et al. Partical penetration welding of 5A06 aluminum alloy with high power fiber laser [J]. Laser Technology, 2016, 40(1):15-19(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201601005.htm

    [14]

    ZHANG J X, LIU F Zh, GAO B, et al. Affecting factors of pulse laser wellding property of Al-Mg series aluminum alloy [J]. Laser Technology, 2015, 39(6):863-868(in Chinese).

    [15]

    DUAN X Y, LIU J. Effect of Zn interlayer on diffusion bonding of Mg-Al dissimilar metal[J]. Hot Working Technology, 2014, 43(17):223-225(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-SJGY201417068.htm

    [16]

    FANG L. Study on the fusion welding process of magnesium alloy and aluminum alloy with Zine as interlayer[D]. Harbin: Harbin Institute of Technology, 2016: 40-50(in Chinese).

    [17]

    LI H, QIAN M, LI D. The effect of intermetallic compounds on laser weldability of dissimilar metal joint between magnesium alloy AZ31B and aluminum alloy 6061[J]. Laser Journal, 2007, 28(5): 61-63(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGZZ200705030.htm

  • 期刊类型引用(20)

    1. 刘志鹏,雷东,黄萌,陈豪威,方春华,胡涛,吕俊杰,李放. 激光清除输电线路树障效率影响因素试验研究. 应用激光. 2024(03): 223-229 . 百度学术
    2. 王帅,赵辉,姚登辉,李忠涛,代爱民. 输电线路激光融冰技术的应用现状及发展分析. 云南电力技术. 2024(02): 61-65 . 百度学术
    3. 方春华,胡涛,徐鑫,董晓虎,程绳,吴田,孙奥琪,张怡琳. 激光清除树障温度和效率影响因素分析. 应用激光. 2024(05): 106-114 . 百度学术
    4. 曾绍聪,高仕斌,于龙,王健,丁楚刚,詹睿. 接触网侵限异物检测与挂网异物清除技术综述. 铁道学报. 2024(07): 51-64 . 百度学术
    5. 关家华,凌忠标,陈君宇,叶蓓,谭家祺. 基于无人机技术的配网线路杆塔鸟巢清除装置研究. 电子制作. 2022(04): 98-100 . 百度学术
    6. 张志博,王一波,张梓奎,王华伟,张贵新,尤正军. 激光清障技术在电网中的应用现状与发展. 电力工程技术. 2022(02): 45-52+74 . 百度学术
    7. 徐鑫,方春华,智李,丁璨,董晓虎,程绳,孙维,陶玉宁. 线激光清除架空线路树障时温度和效率分析. 中国电力. 2022(05): 94-101 . 百度学术
    8. 孙夕彬,李勇,唐伟刚. 主网输变电设备漂浮物故障分析与隐患管控. 湖北电力. 2022(03): 106-112 . 百度学术
    9. 钱建国,魏立,李游,王伟玺,李晓明. 基于三维点云的输电线路分类去噪算法研究. 应用激光. 2022(11): 104-112 . 百度学术
    10. 王颂,李锐海,刘旭,景凤仁,刘爱华. 一种异物清除作业机器人机构的优化设计. 广东电力. 2021(01): 121-126 . 百度学术
    11. 徐鑫,方春华,智李,李景,丁璨,张文婷,董晓虎,程绳. 连续激光作用下瓷质绝缘子温度和热应力分析. 光电子·激光. 2021(01): 78-87 . 百度学术
    12. 杨波,刘传利,吴英迪,蔡亚芬. 使用智能终端控制激光异物清除设备. 电子技术应用. 2021(03): 51-54+60 . 百度学术
    13. 王楠,张秉良,张震,漆照,韩梁. 基于工业物联网的激光除异物装置安全管控技术. 山东电力技术. 2021(05): 42-47 . 百度学术
    14. 吴军,程绳,董晓虎,范杨,林磊,方春华,徐鑫. 线激光清除输电线路树障温度场和应力场分析. 湖北电力. 2021(02): 14-20 . 百度学术
    15. 徐鑫,方春华,李景,丁璨,袁田,董晓虎,普子恒,吴田,黎鹏. 激光清除输电线路异物时异物烧蚀特性分析. 光电子·激光. 2021(06): 637-644 . 百度学术
    16. 刘雷,刘霞,单宁. 高压输电线异物激光清除三维仿真研究. 激光与红外. 2021(10): 1286-1293 . 百度学术
    17. 吴军,程绳,董晓虎,范杨,林磊,方春华,李承熹,徐鑫. 基于改进YOLO算法的激光清异场景目标检测方法. 湖北电力. 2021(04): 59-70 . 百度学术
    18. 高峰,刘阳,肖茂森,唐露甜. 高压输电线聚合物激光清除系统设计与实验研究. 激光与红外. 2020(11): 1328-1332 . 百度学术
    19. 方春华,周秋雨,李景,张文婷,彭智,王康,普子恒,方雨. 瓷质绝缘子表面激光辐射温度和应力特性研究. 高压电器. 2019(06): 151-156+163 . 百度学术
    20. 楼平,岳灵平,李龙. 新型激光除异物技术在特高压输电线路的应用. 浙江电力. 2018(06): 6-9 . 百度学术

    其他类型引用(12)

图(8)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 32
出版历程
  • 收稿日期:  2016-11-22
  • 修回日期:  2016-12-20
  • 发布日期:  2017-11-24

目录

    /

    返回文章
    返回