高级检索

3维激光测风雷达技术研究

李策, 赵培娥, 彭涛, 冯力天, 周杰, 罗雄, 周鼎富

李策, 赵培娥, 彭涛, 冯力天, 周杰, 罗雄, 周鼎富. 3维激光测风雷达技术研究[J]. 激光技术, 2017, 41(5): 703-707. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.017
引用本文: 李策, 赵培娥, 彭涛, 冯力天, 周杰, 罗雄, 周鼎富. 3维激光测风雷达技术研究[J]. 激光技术, 2017, 41(5): 703-707. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.017
LI Ce, ZHAO Peie, PENG Tao, FENG Litian, ZHOU Jie, LUO Xiong, ZHOU Dingfu. Technical research of 3-D wind lidar[J]. LASER TECHNOLOGY, 2017, 41(5): 703-707. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.017
Citation: LI Ce, ZHAO Peie, PENG Tao, FENG Litian, ZHOU Jie, LUO Xiong, ZHOU Dingfu. Technical research of 3-D wind lidar[J]. LASER TECHNOLOGY, 2017, 41(5): 703-707. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.017

3维激光测风雷达技术研究

详细信息
    作者简介:

    李策(1990-), 男, 硕士研究生, 现主要从事激光雷达技术研究

    通讯作者:

    周鼎富, E-mail:df_xh_zhou@sina.com

  • 中图分类号: TN958.98

Technical research of 3-D wind lidar

  • 摘要: 为了精确测量3维大气风场的实时状态以应对低空风切变在飞行器起降过程中给飞行器带来的多种问题,通过DBS四波束风场反演原理研制出一款小型3维激光测风雷达。对大气风场展开测风试验并获取风场数据,并与其它标准测风设备的数据对比分析。结果表明,雷达在晴天和阴天的天气状况下均可以实现对大气风场的有效测量,风速均方根误差0.42m/s,风向均方根误差5.33°。该雷达精准度高、稳定性好,对风切变预警、中低空大气风场预报及飞行器飞行通道的风场测量具有重要作用。
    Abstract: In order to accurately measure the 3-D real-time atmospheric wind field to cope with the problems of low-level wind shear during aircraft take-off and landing, a compact 3-D Doppler wind lidar was developed by using Doppler beam swinging (DBS) principle. The wind field data obtained by the lidar were compared with the anemometry data with the other standard equipments. It turned out that the effective measurement of atmospheric wind field was achieved by the lidar under both sunny and cloudy weather conditions. The root mean square errors of wind speed and wind direction were 0.42m/s and 5.33° respectively. The lidar, with high precision and good stability, plays an important role for wind shear warning, the forecast of low-level atmospheric wind field and wind field measurement of aircraft flight channel.
  • Figure  1.   The process of lidar detection

    Figure  2.   The operating principle of lidar

    Figure  3.   The theory of DBS scanning

    Figure  4.   The schematic diagram of 3-D wind lidar

    Figure  5.   The relationship between laser energy and operating range at diffe-rent visibilities

    Figure  6.   The relationship of wind direction, wind speed and height measured by wind lidar and theodolite balloons

    Figure  7.   Average data acquisition rate of 3-D wind lidarunder different weather conditions

    Table  1   The relationship among lidar's wind profile scanning angle, wind speed and direction

    γ/
    (°)
    wind
    velocity
    error/
    (m·s-1)
    wind direction error/(°)
    (5~10)
    m/s
    (10~20)
    m/s
    (20~30)
    m/s
    (30~40)
    m/s
    (50~60)
    m/s
    10 0.61 7.01 3.50 1.75 1.17 0.70
    15 0.41 4.70 2.35 1.18 0.78 0.47
    20 0.31 3.56 1.78 0.89 0.59 0.36
    25 0.25 2.88 1.44 0.72 0.48 0.29
    30 0.21 2.43 1.22 0.61 0.41 0.24
    下载: 导出CSV

    Table  2   The main parameters of 3-D wind lidar

    parameters numerical value
    working wavelength 1550nm
    detection range 45m~3km
    range resolution 30m/50m/75m/100m
    angular resolution 0.1°
    scan range(azimuth/pitch) 0°~360°/0°~90°
    scanning mode DBS/PPI/RHI/CAPPI
    accuracy of wind speed 0.2m/s(radial), 0.5m/s
    accuracy of wind direction
    wind speed range -60m/s~+60m/s
    power consumption of lidar 200W(24V, DC)
    下载: 导出CSV
  • [1]

    WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J].Laser & Infrared, 2012, 42(12):1324-1328(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGHW201212003.htm

    [2]

    SHUN Ch M, LAU S Y. Implementation of a doppler light detection and ranging(lidar) system for the hong kong international airport[C]//International Civil Aviation Organization 10th Conference on Aviation, Range and Aerospace Meteorology of the American Meteorological Society(AMS). Montreal, Canada: International Civil Aviation Organization, 2002: CNS/MET SG/8-IP/3.

    [3]

    CARIOU J P, CANAT G. Fiber lasers:new effective sources for coherent lidars[J]. Proceedings of the SPIE, 2007, 6750:675007. DOI: 10.1117/12.741584

    [4]

    ASAKA K, YANAGISAWA T, HIRANO Y. 1.5μm eye-safe cohe-rent lidar system for wind velocity measurement[J]. Proceedings of the SPIE, 2001, 4153:321-328. DOI: 10.1117/12.417063

    [5]

    ODA R, IWAI H, MURAYAMA Y, et al. Doppler lidar observations of the coherent structures in the internal boundary layer[C]//American Meteorological Society (AMS) Ninth Symposium on the Urban Environment. New York, USA: American Meteorological Society (AMS), 2010: 10.1.

    [6]

    PEARSON G N, EACOCK J R. Fiber-based coherent pulsed Doppler lidar for atmospheric monitoring[J]. Proceedings of the SPIE, 2002, 4484:51-57 DOI: 10.1117/12.452799

    [7]

    ZHU X P, LIU J W, DIAO W F, et al. Study of coherent Doppler lidar system[J]. Infrared, 2012, 33(2):8-12(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWAI201202004.htm

    [8]

    LI Y C, WANG C H, QU Y, et al. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precis ion for linear expansion coefficient[J]. Chinese Physics, 2011, B20(1):014208. http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201101060.htm

    [9]

    LI Y C, WANG C H. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne[J]. Chinese Physics, 2012, B21(2):020701. http://www.cqvip.com/QK/85823A/201202/40768536.html

    [10]

    LI Y C, YANG Y L, XIA X S, et al. The method for dual-beam laser heterodyne ultra-precision measurement of the glass thickness[J]. Acta Physica Sinica, 2009, 58(8):5473-5478(in Chinese). http://www.opticsinfobase.org/abstract.cfm?URI=CLEOPR-2009-TuE1_4

    [11]

    LI Y C, GAO L, CONG H F, et al. Optimum optical local oscillator power leves impact on signal-to-noise ratio in heterodyne[C]//IEEE International Symposium on Photonics and Optoelectronics(SOPO 2010). New York, USA: IEEE, 2010: 1-3.

    [12]

    LI Y C, WANG C H, GAO L, et al. Design and experimenta l investigation of a 2.05μm single mode fiber coupler with high coupling efficiency[C]//IEEE 2010 ASOMT & 10th CRST. New York, USA: IEEE, 2010: 217-220.

    [13]

    LIU Zh Sh, CHEN Zh, YU C R, et al. Doppler wind lidar:from vehicle-mounted to space-borne[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2):126-138(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqyhjgxxb201502005

    [14]

    CHEN Y, ZHOU B Zh, TAN J, et al. Research and application of airborne laser Doppler wind lidars[J].Laser Technology, 2011, 35(6):795-799(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201106021.htm

    [15]

    FENG L T, GUO H Q, CHEN Y, et al. Experiment of all fiber Doppler lidar at 1.55μm[J]. Infrared and Laser Engineering, 2011, 40(5):844-847(in Chinese).

    [16]

    LI C, LIU J W, ZHAO P E, et al. Correction method of tilt wind field of mobile wind lidar[J]. Laser Technology, 2017, 41(3):385-390(in Chinese). http://www.jgjs.net.cn/EN/abstract/abstract15600.shtml

  • 期刊类型引用(3)

    1. 严博, 苏金善. 激光遥感探测装置固有特性的观测与分析. 伊犁师范学院学报(自然科学版). 2020(01): 58-62 . 百度学术
    2. 赵洪博, 张达, 杨健坤, 孟繁萃, 张明. 小波分层法在激光多普勒测速信号中的应用. 激光技术. 2019(01): 103-108 . 本站查看
    3. 宋莹, 赵旭龙, 姜岩秀, 巴音贺希格, 齐向东. 移栅型全息光栅曝光干涉条纹锁定. 中国激光. 2017(05): 233-240 . 百度学术

    其他类型引用(1)

图(7)  /  表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  2
  • PDF下载量:  12
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-12-14
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回