-
光子晶体光纤(photonic crystal fiber, PCF)又称为微结构光纤(micro-structured fibers, MSF), 是一种具有特殊色散和非线性结构的光纤。这个概念最早由RUSSELL在1992年提出。它分为两大类,一类称为全内反射型光子晶体光纤(total internal reflection photonic crystal fiber, TIR-PCF),另一类称为光子带隙型光子晶体光纤(photonic bandgap photonic crystal fiber, PBG-PCF)。前者的特点是纤芯的折射率比包层的折射率高,这种光子晶体光纤也叫做折射率引导性光子晶体光纤。后者的特点是纤芯为空气或者由折射率比包层低的材料构成。
对于折射率引导型光子晶体光纤而言,实现起来比较简单。其结构特点是在2维方向上紧密排列,在3维方向上基本保持不变,由空气孔构成包层。对于纤芯部分的设计, 为了达到特定的目的,人们也在尝试改变其结构形态和材料, 如WANG等人[8]为了控制光子晶体光纤的损耗而设计了一种圆内旋轮线型Kogome晶格纤芯的光子晶体光纤。YANG等人[9]为了研究模间色散,提出了一种三芯光子晶体光纤。在材料方面, 常规光子晶体光纤纤芯部分的材料主要采用石英玻璃, 但是为了控制光子晶体光纤的特性,也会选择其它材料。SUN等人[10]为了增强光子晶体光纤的非线性参量而在纤芯部分加入了Ge。而LIU等人[11]为了控制色散而设计了Bi掺杂的纤芯。WANG等人[12]在2014年报道,以一种掺Yb3+硅酸盐材料作为PCF的纤芯,纤芯形状为正六边形。
本文中研究的是一种椭圆纤芯的全内反射型光子晶体光纤,如图 1所示。光纤横截面分为包层和纤芯(见图 1中的3),包层内设有大空气孔(见图 1中的1),大空气孔均匀排列构成六角点阵的正六边形阵列,相邻的3个大空气孔的中心组成正三角形,包层的基质材料仍然为石英玻璃材料。纤芯位于由大空气孔组成的正六边形的中心,材料由掺Yb3+铝硅酸盐玻璃构成,纤芯的横截面形状采用椭圆形结构。靠近纤芯的包层空气孔和纤芯之间排列有4个椭圆形小空气孔(见图 1中的2),4个小空气孔以椭圆形纤芯的长轴为对称轴分布在纤芯两侧,小空气孔的中心与大空气孔的中心位于一致的点阵位置。
对于这种结构的色散系数计算按下面公式:总色散系数D(λ)=材料色散系数Dm(λ)+波导色散系数Dw(λ)。材料色散系数Dm(λ)在短波区域很大,占支配地位,而在长波区材料色散系数随波长的增加而减小,二者可以有互相抵消的情形。Dm(λ)可由Sellmeier公式计算得到。对于椭圆纤芯处材料为铝硅酸盐玻璃,其材料色散关系由Sellmeier公式[13]表示:
$ {n^2}\left( \lambda \right) = A + \frac{B}{{1 - C/{\lambda ^2}}} + \frac{D}{{1 - E/{\lambda ^2}}} $
(1) 式中, n为材料折射率; A, B, C, D, E可由实验数据拟合得到。A, B, C, D的数值见表 1。
Table 1. Coefficient of Sellmeier formula
A B C D E 1.4136733 0.9503994 1.3249011×10-2 0.9044591 ? E的数值和温度有关,可利用表 2中的数据[14]得到。表 2中的第1列为波长λ,第2列是由实验得到的铝硅酸盐玻璃在28℃时的折射率n,第3列是根据前两列数据由上面的Sellmeier公式,连同已知的A, B, C, D的数值,计算得到的E的相应数值。
Table 2. Coefficient E of Sellmeier formula
λ/μm n E(λ, n, A, B, C, D) 0.54607 1.551 101.59854 0.578 1.54928 99.362136 1.01398 1.53854 100.22775 1.12866 1.53699 99.556230 1.36728 1.53419 100.64881 1.47 1.53292 99.435454 1.52952 1.53224 99.728875 1.66 1.53078 100.96798 1.701 1.53014 99.402531 1.981 1.52648 99.464789 将E的10个计算值取平均后得到:100.03092,由此得到研究纤芯色散所需的Sellmeier公式的全部拟合系数,见表 3。
Table 3. Whole coefficient of Sellmeier formula
A B C D E 1.4136733 0.9503994 1.3249011×10-2 0.9044591 100.03932 为了计算光子晶体光纤包层部分硅玻璃的色散,需要利用的Sellmeier公式为:
$ {n^2}\left( {{\lambda _1}} \right) = 1 + \sum\limits_{i = 1}^m {} \frac{{{A_i}{\lambda _{i + 1}}^2}}{{{\lambda _{i + 1}}^2 - {\lambda _i}^2}} $
(2) Table 4. Coefficient of Sellmeier formula of cladding
A1 A2 A3 λ1 λ2 λ3 0.6961663 0.4079426 0.8974794 0.0684043 0.1162414 9.896161 原则上得到Sellmeier公式的具体形式后,利用公式${D_{\rm{m}}}(\lambda ) = - \frac{\lambda }{c}\frac{{{\partial ^2}n}}{{\partial {\lambda ^2}}} $对Sellmeier公式求2阶导即可计算出光子晶体光纤的材料色散系数Dm(λ)。实际上可以在计算基模的有效折射率时将Sellmeier公式考虑进去,得到的有效折射率neff既包含了波导对色散的贡献,又包含了材料对色散的贡献。用下式[16]即可计算出光子晶体光纤的总色散系数D(λ):
$ D\left( \lambda \right) = - \frac{\lambda }{c}\frac{{{\partial ^2}{\rm{|Re}}({n_{{\rm{eff}}}})|}}{{\partial {\lambda ^2}}} $
(3) 式中, Re(neff)是基模有效折射率neff的实部, c为光速。
掺Yb3+铝硅酸盐玻璃纤芯的光子晶体光纤
Photonic crystal fiber with Yb3+-doped aluminosilicate glass core
-
摘要: 为了获得用于掺Yb3+脉冲光纤激光器的具有反常色散的光子晶体光纤,设计了一种掺Yb3+铝硅酸盐玻璃纤芯的结构,包层部分为普通的六边形结构,分布着直径相同的空气孔,其纤芯横截面为椭圆形,在包层和纤芯之间设计了4个小椭圆空气孔。研究了包层的空气孔直径d与空气孔中心间距Λ以及二者的比值d/Λ这些参量变化时,色散随波长变化的情况;同时研究了4个小孔对色散和双折射的影响。结果表明,这一结构的光子晶体光纤,当Λ=2.3μm、d/Λ=0.5时色散呈现反常色散,作为掺Yb3+脉冲光纤激光器的增益部分是可行的。该研究对掺Yb3+光子晶体光纤在脉冲光纤激光器方面的使用是有帮助的。Abstract: In order to get photonic crystal fiber with anomalous dispersion, which can be used as the gain part of a Yb3+-doped pulse fiber laser, a structure of photonic crystal fiber(PCF) with Yb3+-doped aluminosilicate glass core was designed. The cross-section of the core was oval, the cladding was the ordinary hexagonal structure with air holes in the same diameter, and there were four small air oval holes between the core and the cladding. The influences of air hole's diameter d, pitch Λ and the ratio d/Λ of the cladding on the relationship between dispersion and wavelength were studied, as well as the influence of four small air oval holes on the relationship between dispersion and birefringence. The results show that when Λ is 2.3μm and d/Λ is 0.5, the anomalous dispersion is observed, and this photonic crystal fiber can be used as the gain part of a Yb3+-doped pulse fiber laser as well. The research is helpful for the use of Yb3+-doped PCF as the gain part of a pulse fiber laser.
-
Key words:
- fiber optics /
- machining process /
- fiber laser /
- photonic crystal fiber /
- aluminosilicate glass
-
Table 1. Coefficient of Sellmeier formula
A B C D E 1.4136733 0.9503994 1.3249011×10-2 0.9044591 ? Table 2. Coefficient E of Sellmeier formula
λ/μm n E(λ, n, A, B, C, D) 0.54607 1.551 101.59854 0.578 1.54928 99.362136 1.01398 1.53854 100.22775 1.12866 1.53699 99.556230 1.36728 1.53419 100.64881 1.47 1.53292 99.435454 1.52952 1.53224 99.728875 1.66 1.53078 100.96798 1.701 1.53014 99.402531 1.981 1.52648 99.464789 Table 3. Whole coefficient of Sellmeier formula
A B C D E 1.4136733 0.9503994 1.3249011×10-2 0.9044591 100.03932 Table 4. Coefficient of Sellmeier formula of cladding
A1 A2 A3 λ1 λ2 λ3 0.6961663 0.4079426 0.8974794 0.0684043 0.1162414 9.896161 -
[1] SONG Y J, HU M L, LIU Q W, et al. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser[J]. Acta Physica Sinica, 2008, 57(8):5045-5048(in Chinese). [2] CHEN S P, LIN D F, HOU J, et al. Passively mode locked Yb-doped fiber laser with nearly 2W average output power[J]. Chinese Journal of Lasers, 2009, 36(11):2817-2821(in Chinese). doi: 10.3788/JCL [3] TAN F Z, LIU J, SUN R Y, et al. All-normal-dispersion passively mode-locked Yb-doped fiber laser with multimode interference effect[J]. Chinese Journal of Lasers, 2013, 40(4):0402010(in Chinese). doi: 10.3788/CJL [4] WADSWORTH W J, KNIGHT J C, RUSSELL P J, et al. Large mode area photonic crystal fiber laser[J]. Conference on Lasers and Elertro-Optics, 2001, 23(60):319-322. [5] ZHANG D P, HU M L, XIE C, et al. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking[J]. Acta Physica Sinica, 2012, 61(4):044206(in Chinese). [6] XIE C, HU M L, ZHANG D P, et al. High energy dissipative soliton mode-locked fiber oscillator based on a multipass cell[J]. Acta Physica Sinica, 2013, 62(5):054203(in Chinese). [7] LI P X, YANG C, ZHAO Z Q, et al. 1027nm large-mode-area ouble-cladding photonic crystal fiber mode-locked laser based on SESAM[J]. Chinese Journal of Lasers, 2014, 41(5):0502007(in Chinese). doi: 10.3788/CJL [8] WANG Y Y, WHEELER N V, COINY F, et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber[J]. Optics Letters, 2011, 36(5):669-671. doi: 10.1364/OL.36.000669 [9] YANG J, LIU M, ZHU M, et al. Three-core photonic crystal fiber with zero intermodal dispersion[J]. Laser Technology, 2015, 39(4):528-532(in Chinese). [10] SUN T T, KAI G Y, WANG Z, et al. Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region[J]. Chinese Optics Letters, 2008, 6(2):93-95. doi: 10.3788/COL [11] LIU X, HAN L H, JIA X Y, et al. Design of hybrid-core PCF with nearly-zero flattened dispersion and high nonlinearity.[J]Chinese Optics Letters, 2015, 13(1):010602. doi: 10.3788/COL [12] WANG L L, GUO Y Y, TAN F, et al. Preparation of ytterbium-doped photonic crystal fiber core material and numerical simulation of optical fiber[J]. Infrared and Laser Engineering, 2014, 43(11):3718-3723(in Chinese). [13] GORACHAND G, MICHIYUKI E, TAKASHI I. Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses[J]. Journal of Lightwave Technology 1994, 12(8):1338-1342. doi: 10.1109/50.317500 [14] WRAY J H, NEU J T. Refractive index of several glasses as a function of wavelength and temperature[J]. Journal of the Optics Society of America, 1969, 59(6):774-776. doi: 10.1364/JOSA.59.000774 [15] AGRAWAL G P. Nonlinear fiber optics (fourth edition)[M]. London, UK:Academic Press, 2007:6. [16] WANG Y M, ZHANG X, REN X M. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss[J]. Appllied Optics, 2010, 49(3):292-297. doi: 10.1364/AO.49.000292 [17] WANG D S. Study on theory of self-similar pulse generation and transition based on passively mode locked fiber laser[D]. Changchun: Jilin University, 2016: 69(in Chinese). [18] SONG Y J. Research on the characteristics of the mode-locked Yb3+-doped large-mode-area photonic crystal fiber laser[D]. Tianjin: Tianjin University, 2009: 5(in Chinese). [19] LI A P, ZHENG Y, ZHANG X F, et al. The supercontinuum generation in a photonic crystal fiber pumped at the anomalous dispersion region[J]. Laser Technology, 2008, 32(2):50-52(in Chinese).