高级检索

参量变化对长程表面等离子体波特性的影响

刘瑾, 杨海马

刘瑾, 杨海马. 参量变化对长程表面等离子体波特性的影响[J]. 激光技术, 2017, 41(2): 221-224. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.015
引用本文: 刘瑾, 杨海马. 参量变化对长程表面等离子体波特性的影响[J]. 激光技术, 2017, 41(2): 221-224. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.015
LIU Jin, YANG Haima. Influence of parameters change on the characteristics of long-range surface plasma wave[J]. LASER TECHNOLOGY, 2017, 41(2): 221-224. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.015
Citation: LIU Jin, YANG Haima. Influence of parameters change on the characteristics of long-range surface plasma wave[J]. LASER TECHNOLOGY, 2017, 41(2): 221-224. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.015

参量变化对长程表面等离子体波特性的影响

基金项目: 

上海市教委科研创新基金资助项目 13YZ111

上海市自然科学基金资助项目 14ZR1418500

国家自然科学基金资助项目 61302181

上海市自然科学基金资助项目 14ZR1418400

详细信息
    作者简介:

    刘瑾(1978-), 女, 博士, 副教授, 主要研究光电检测及智能监控。E-mail:flyingpine@sina.com

  • 中图分类号: TN29

Influence of parameters change on the characteristics of long-range surface plasma wave

  • 摘要: 为了掌握长程表面等离子体波的共振角度、共振峰半峰全宽以及衰减峰深度等重要特性,采用棱镜耦合激发介质-金属薄膜-介质对称结构中的长程表面等离子体波,研究了金属膜材料、厚度、介质折射率及介质厚度等参量变化时对长程表面等离子体波特性的影响。结果表明,实验中激发的长程表面等离子体波的衰减峰半峰全宽比传统的窄1~2个数量级;当介质膜厚度为500nm和1300nm时,激发的表面等离子体波的衰减深度只有薄膜厚度为700nm和1000nm时的1/2左右;随着介质膜厚度的增加,半峰全宽减小,金属膜越薄,衰减深度越深,衰减峰的半峰全宽值越小;介质膜折射率的改变对于半峰全宽的影响不明显;金属膜参量的变化将改变共振峰的位置。该研究为长程表面等离子体波的激发及应用于传感领域提供了有效依据,有利于其在波导和生物传感等方面的应用。
    Abstract: In order to acquire the characteristics of long-range surface plasma wave, such as the resonance angle, full width at half maximum of resonance peak and depth of attenuation peak, a prism coupling method was used to excite the long-range plasma surface wave of media-metal film-media symmetrical structure. The influences of the changes of material film material, metal film thickness, medium refractive index, medium thickness and other parameters on the characteristics of long-range surface plasma wave were studied. The results show that, the full width at half maximum of the attenuation peak of long-range surface plasma wave is narrower about 1 or 2 orders of magnitude than that of traditional surface plasma wave. When the dielectric film thickness is 500nm and 1300nm, the attenuation depth of plasma surface wave is only about 1/2 of those of dielectric film thickness 700nm and 1000nm. The full width at half maximum decreases with the increasing of dielectric film thickness. The thinner metal film is, the deeper attenuation depth is, the smaller full width at half maximum of attenuation peak is. The changes of medium refractive index has no obvious influence on full width at half maximum. The various metal film parameters will change the position of resonance peak. The study provides the effective basis for the application of long-range surface plasma wave in sensing, waveguide, and biosensors field.
  • Figure  1.   System of long-range surface plasma wave excited by prism coupling

    Figure  2.   Diagram of testing system

    Figure  3.   Comparison of long-range surface plasma wave and the traditional structure

    Figure  4.   Test results of long-range surface plasma wave excited by different metal

    Figure  5.   Results with the excitation of dielectric film with different thickness

    Figure  6.   Results with the excitation of metal film with different thickness

    Figure  7.   Results with the excitation of dielectric film with different refractive index

  • [1]

    SARID D. Long-range surface-plasma waves on very thin metal films[J]. Physics Review Letters, 1981, 47(26):1927-1930. DOI: 10.1103/PhysRevLett.47.1927

    [2]

    DECK R T, SARID D. Enhancement of second harmonic generation by coupling to long-range surface plasmas[J]. Journal of the Optical Society of America, 1982, 72(12):1613-1617. DOI: 10.1364/JOSA.72.001613

    [3]

    SHI X L, ZHENG S L, CHI H, et al. All-optical modulator with long range surface plasmas resonance[J]. Optics & Laser Technology, 2013, 49(7):316-319.

    [4]

    SHI H, LIU Z Y, WANG X X, et al. A symmetrical optical waveguide basedsurface plasmas resonance biosensing system[J]. Sensors and Actuators, 2013, B185(8):91-96. http://www.sciencedirect.com/science/article/pii/S0925400513005662

    [5]

    PARK S Y, KIM J T, SHIN J S, et al. Hybrid vertical directional coupling between a long range surface plasmas polariton waveguide and a dielectric waveguide[J]. Optics Communications, 2009, 282(23):4513-4517. DOI: 10.1016/j.optcom.2009.08.038

    [6]

    CAO Z Q. Guided wave optics[M]. Beijing:Science and Technology Press, 2007:144-146(in Chinese).

    [7]

    SLAVIK R, HOMOLA J. Ultrahigh resolution long range surface plasmas-based sensor[J]. Sensors and Actuators, 2007, B123(1):10-12. http://www.sciencedirect.com/science/article/pii/S0925400506005673

    [8]

    NENNINGER G G, HOMOLA J, YEE S S. Long range surface plasmas for high resolution surface plasmas resonance sensors[J].Sensors and Actuators, 2001, B74(1):145-151.

    [9]

    TAN X X, WANG G J, WANG Zh B. Opened suspended core fiber chip based on surface plasma resonance enhancement mechanism[J]. Laser Technology, 2016, 40(2):209-212(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201602012

    [10]

    HU M Y, ZHU X, QI L J. Numerical simulation of Otto structure in surface plasma wave light modulator[J]. Laser Technology, 2005, 29(3):325-327(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200503019

    [11]

    LI Y X, LIU F, HUANG Y D, et al. Coupling between second-order mode in dielectricwaveguide and fundamental mode in long range surface plasmas waveguide[J]. Optics Communications, 2013, 289(2):60-63. http://www.sciencedirect.com/science/article/pii/S0030401812011182

    [12]

    GUO X W, DONG Q M. Long range surface plasmas interference lithography[J].Microelectronic Engineering, 2011, 88(8):2184-2187. DOI: 10.1016/j.mee.2011.01.006

    [13]

    KRUPIN O, WANG C, BERINI P. Selective capture of human red blood cells based on blood group using long-range surface plasmas waveguides[J]. Biosensors and Bioelectronics, 2014, 53(3):117-122. http://www.ncbi.nlm.nih.gov/pubmed/24135542

    [14]

    SUI G R, CHENG L, CHEN L. Large positive and negative lateral optical beam shift due to long-range surface plasmas resonance[J]. Optics Communications, 2011, 284(6):1553-1556. DOI: 10.1016/j.optcom.2010.10.091

  • 期刊类型引用(3)

    1. 李鹏. 光纤传感器电路中的关键技术分析. 激光杂志. 2018(04): 62-64 . 百度学术
    2. 贾世甄, 朱益清, 姚晓天. 基于双光束光源的保偏光纤定轴方法研究. 激光技术. 2018(06): 785-789 . 本站查看
    3. 何丹丹, 赵换丽. 光纤传感信号的增益均衡处理. 激光杂志. 2017(06): 97-99 . 百度学术

    其他类型引用(0)

图(7)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-03-10
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回