高级检索

强激光驱动的运动电场加速质子的研究

买买提艾力·巴克, 艾米尔丁·艾米都拉

买买提艾力·巴克, 艾米尔丁·艾米都拉. 强激光驱动的运动电场加速质子的研究[J]. 激光技术, 2017, 41(2): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.031
引用本文: 买买提艾力·巴克, 艾米尔丁·艾米都拉. 强激光驱动的运动电场加速质子的研究[J]. 激光技术, 2017, 41(2): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.031
BAKE Muhammadali, AIMIDULA Aimierding. Proton acceleration of moving electric field driven by ultraintense laser pulse[J]. LASER TECHNOLOGY, 2017, 41(2): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.031
Citation: BAKE Muhammadali, AIMIDULA Aimierding. Proton acceleration of moving electric field driven by ultraintense laser pulse[J]. LASER TECHNOLOGY, 2017, 41(2): 302-306. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.031

强激光驱动的运动电场加速质子的研究

基金项目: 

国家自然科学基金资助项目 11575150

新疆大学博士启动基金资助项目 BS150217

新疆大学博士启动基金资助项目 BS150216

国家自然科学基金资助项目 11547121

详细信息
    作者简介:

    买买提艾力·巴克(1982-), 男, 博士, 讲师, 现主要从事激光等离子体相互作用的研究。E-mail:aili@mail.bnu.edu.cn

  • 中图分类号: O539

Proton acceleration of moving electric field driven by ultraintense laser pulse

  • 摘要: 为了研究激光辐射压驱动的运动电场中加速质子的相关问题,对强激光与等离子体相互作用过程进行了理论分析,并采用2维粒子模拟方法,对理论分析结果进行了数值模拟验证。结果表明,当超短超强激光脉冲与处在背景等离子体前方的薄固体平靶相互作用时,在固体靶后部形成一个由电子层-离子层组成的双层结构,在激光辐射压的不断推进下,双层结构在背景等离子体里以一定速度传播形成一个运动电场;在背景等离子体中的质子被这个运动电场捕获并能加速到很高的能量,质子的最大能量达到20GeV。理论分析结果与2维粒子模拟结果符合得很好。
    Abstract: In order to study the proton acceleration of the moving electric field driven by laser radiation pressure, the interaction process between high power laser and laser plasma was analyzed theoretically. 2-D particle-in-cell simulations was used to verify the theoretical analysis result. The results show that when the interaction between ultra-short ultra-intense laser pulse and thin solid flat target in front of the background plasma, a bilayer structure consisted by electron layer and ion layer was generated at the back of the solid target. Under the constant advancement of laser radiation pressure, the double layer structure in the background plasma spreaded at a certain speed and formed a moving electric field. Protons in background plasma were captured by this moving electric field and accelerated to a very high energy. The maximum proton energy reached 20GeV. The results of theoretical analysis are in good agreement with the simulation results of 2-D particle.
  • Figure  1.   Numerical solution of equations in the model

    a—piston velocity and proton velocity vs. time b—proton energy vs. time

    Figure  2.   Flow schematic of PIC simulation

    Figure  3.   2-D PIC simulation results of longitudinal electric field (line) and proton phase space (dots) at time t=80fs

    Figure  4.   a—energy spectrum vs. energy b—proton energy vs. time

    Figure  5.   Relationship between the normalized laser energy and proton energy

  • [1]

    BULANOV S V, ESIRKEPOV T Z, KHOROSHKOV V S, et al. Oncological hadrontherapy with laser ion accelerators[J]. Physics Letters, 2002, A299(2/3):240-247. http://www.sciencedirect.com/science/article/pii/S0375960102005212

    [2]

    BORGHESI M, CAMPBELL D H, SCHIAVI A, et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique[J]. Physics of Plasmas, 2002, 9(5):2214-2220. DOI: 10.1063/1.1459457

    [3]

    ROTH M, COWAN T E, KEY M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(83):436-439. http://europepmc.org/abstract/med/11177849

    [4]

    REMINGTON B A, ARNETT D, DRAKE R P, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284(5419):1488-1493. DOI: 10.1126/science.284.5419.1488

    [5]

    SARRI G, SCHUMAKER W, PIAZZA A D, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110(25):255002. DOI: 10.1103/PhysRevLett.110.255002

    [6]

    ARKIN Z, ABUDOURESULI A. Simulation of positron acceleration in the wakefield of sine laser pulses[J]. Laser Technology, 2013, 37(1):130-133(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201301032

    [7]

    BARTAL T, FOORD M E, BELLEI C, et al. Focusing of short-pulse high-intensity laser-accelerated proton beams[J]. Nature Physics, 2012, 8(2):139-142. DOI: 10.1038/nphys2153

    [8]

    ESIRKEPOV T, BORGHESI M, BULANOV S V, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92(17):175003. DOI: 10.1103/PhysRevLett.92.175003

    [9]

    YAN X Q, LIN C, SHENG Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 2008, 100(13):135003. DOI: 10.1103/PhysRevLett.100.135003

    [10]

    CHEN M, PUKHOV A, YU T P, et al. Enhanced collimated Gev monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse[J]. Physical Review Letters, 2009, 103(2):02480. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0903.3567

    [11]

    MacCHI A, VEGHINI S, LISEYKINA T V, et al. Radiation pressure acceleration of ultrathin foils[J]. New Journal of Physics, 2010, 12(4):045013. DOI: 10.1088/1367-2630/12/4/045013

    [12]

    ROBINSON A P L, GIBBON P, ZEPF M, et al. Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses[J]. Plasma Physics and Controlled Fusion, 2009, 51(2):024004. DOI: 10.1088/0741-3335/51/2/024004

    [13]

    HONG X R, XIE B S, ZHANG S, et al. High quality ion acceleration from a double-layer target dominated by the radiation pressure of a transversely gaussian laser pulse[J]. Physics of Plasmas, 2010, 17(10):103107. DOI: 10.1063/1.3503604

    [14]

    BAKE M A, ZHANG S, XIE B S, et al. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density[J]. Physics of Plasmas, 2012, 19(8):083103. DOI: 10.1063/1.4742170

    [15]

    ZHANG Z M, HE X T, SHENG Z M, et al. High-density highly collimated monoenergetic GeV ions from interaction of ultraintense short laser pulse with foil in plasma[J]. Physics of Plasmas, 2010, 17(4):043110. DOI: 10.1063/1.3385444

    [16]

    ZHENG F L, WANG H Y, YAN X Q, et al. Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target[J]. Physics of Plasmas, 2012, 19(2):023111. DOI: 10.1063/1.3684658

  • 期刊类型引用(2)

    1. 阿依妮萨·图尔荪,买买提艾力·巴克,阿不都热苏力·阿不都热西提. 激光等离子体相互作用中量子电动力学效应对激光能量吸收的影响. 激光杂志. 2020(03): 48-51 . 百度学术
    2. 张碧津,汪洋,宋海英,刘海云,刘世炳. 超强激光驱动薄膜靶谐波辐射的模拟研究. 激光技术. 2018(01): 113-116 . 本站查看

    其他类型引用(1)

图(5)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-01-02
  • 修回日期:  2016-01-22
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回