高级检索

钨基合金激光立体成形的组织及性能研究

王攀, 刘天伟, 王述钢, 蒋驰, 杨帆

王攀, 刘天伟, 王述钢, 蒋驰, 杨帆. 钨基合金激光立体成形的组织及性能研究[J]. 激光技术, 2016, 40(2): 254-258. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.022
引用本文: 王攀, 刘天伟, 王述钢, 蒋驰, 杨帆. 钨基合金激光立体成形的组织及性能研究[J]. 激光技术, 2016, 40(2): 254-258. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.022
WANG Pan, LIU Tianwei, WANG Shugang, JIANG Chi, YANG Fan. Research of microstructure and properties of tungsten based alloy fabricated by laser solid forming[J]. LASER TECHNOLOGY, 2016, 40(2): 254-258. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.022
Citation: WANG Pan, LIU Tianwei, WANG Shugang, JIANG Chi, YANG Fan. Research of microstructure and properties of tungsten based alloy fabricated by laser solid forming[J]. LASER TECHNOLOGY, 2016, 40(2): 254-258. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.022

钨基合金激光立体成形的组织及性能研究

基金项目: 

中国工程物理研究院重点实验室学科发展基金资助项目(xk201308)

详细信息
    作者简介:

    王攀(1990-),男,硕士研究生,主要从事合金激光立体成形方面的研究。

    通讯作者:

    刘天伟,E-mail:liutianwei@caep.cn

  • 中图分类号: TN204

Research of microstructure and properties of tungsten based alloy fabricated by laser solid forming

  • 摘要: 为了制备高性能、大尺寸钨合金零件,利用激光立体成形技术进行了前期探究实验,在大气环境下制备多种配比的W-Ni-Fe高比重合金力学拉伸试验件,通过测试抗拉强度、硬度,结合组织结构和成分配比的探究分析,发现其成形性及力学性能与传统的粉末冶金烧结工艺之间还存在着一定的差距。抗拉强度在W原子数分数为0.6时达到最大值717.5MPa,之后随着W原子数分数的增大反而明显减小,当W原子数分数在0.8以上时,强度已低于400MPa。样品存在孔洞和氧化现象,大量W未溶化,Ni和Fe元素越多,微观组织均匀性越好、成分偏析越小。结果表明,利用激光立体成形技术可对钨基合金堆积成形,但是实验工艺参量和实验环境仍需进一步改进。此研究可获得免受大气气氛影响和工艺参量限制的试样,为获得性能更好的高比重钨合金激光立体成形件提供了帮助。
    Abstract: In order to prepare high-performance and large-size tungsten alloy parts, the preliminary experiments were carried out by using the laser solid forming technique. Various proportions of W-Ni-Fe high-density alloy mechanical tensile test pieces were prepared under atmospheric conditions. By testing tensile strength and hardness, by analyzing the structure and the compents proportions, the differences between the traditional powder metallurgy sintering process and formability and mechanical properties were found. The results show that the maximum tensile strength reaches 717.5MPa under 0.6 of W atomicity fraction and it decreases significantly with the increase of W atomicity fraction. When atomicity fraction of W atom is more than 0.8, the strength is lower than 400MPa. Holes and oxidation phenomenon exist in the samples. A large number of W doesn't melt. The more Ni, Fe elements, the better microstructure uniformity, the smaller composition segregation. The results preesent that tungsten alloy can be formed by laser solid forming technique but experiment process parameters and experimental environment remain to be further improved. Samples can be obtained free from effect of atmosphere and process parameters limits based on this study. Furthemore, the study is helpful to obtain better performance of tungsten alloy laser solid forming parts.
  • [1]

    FAN A G, SHI Y H. Research progress of high performance bombed tungsten heavy alloy in foreign[J]. Ordnance Material Science and Engineering, 1999, 22(1):45-48(in Chinese).

    [2]

    ZHONG M L, LIU W J, NING G Q, et al. Laser direct manufacturing of tungsten nickel collimation component[J]. Journal of Materials Processing Technology, 2004, 147(2):167-173.

    [3]

    GU D D, SHEN Y F, PAN Y F, et al. Study on direct metal laser sintering forming mechanism[J]. Journal of Materials Engineering, 2004, 5(1):42-48(in Chinese).

    [4]

    ZHONG M L, YANG L, LIU W J, et al. Laser direct manufacturing of alloy W/Ni space telescope collimator[J]. Chinese Journal of Lasers, 2004, 31(4):482-486(in Chinese).

    [5]

    MING X L, CHEN J, TAN H, et al. Coarsening behavior of gamma phase in GH4169 superalloy fabricated by laser solid forming[J]. Journal of Materials Engineering, 2014, 15(8):8-14(in Chinese).

    [6]

    LIU F Ch, LIN X, YU X B, et al. Evolution of interface and crystal orientation of laser solid formed GH4169 superalloy during recrystallization[J]. Acta Metallurgica Sinica, 2014, 50(4):463-470(in Chinese).

    [7]

    QIAN Y H, TAN H, LI J, et al. Microstructure characterization of laser solid forming Ti-6Al-4V alloy by high power[J]. Rare Metal Materials and Engineering, 2014, 43(9):2162-2166(in Chinese).

    [8]

    YANG J Q, CHEN J, ZHAO W Q, et al. Study on the rate of crack propagation of laser solid forming of TC11DT titanium alloy[J]. Applied Laser, 2014,34(4):277-282(in Chinese).

    [9]

    LI J, LIN X, QIAN Y H, et al. Study on microstructures and mechanical properties of TC4 titanium alloy by laser solid forming[J]. Chinese Journal of Lasers, 2014,41(11):29-33(in Chinese).

    [10]

    CHEN J, ZHANG R, ZHANG Q, et al. Influence of laser solid forming Ti60 alloy microstructure and defects on the performance[J]. Rare Metal Materials and Engineering, 2014, 43(3):548-552(in Chinese).

    [11]

    ZHANG X H, LIN X, CHEN J, et al. Effect of heat treatment on Microstructure and mechanical properties of TA15 alloy by laser solid forming[J]. Rare Metal Materials and Engineering,2011,40(1):142-147(in Chinese).

    [12]

    ZHAO W Q, CHEN J, YANG J Q, et al. Influence of laser solid forming process on microstructure and mechanical properties of TC11 titanium alloy[J]. Applied Laser, 2012,32(6):479-483(in Chinese).

    [13]

    ZHANG Q, CHEN J, HAN Ch X, et al. Laser repair heat affected zone depth on tensile properties of TC17-TC11 dual alloy[J]. Applied Laser, 2012,32(4):267-271(in Chinese).

    [14]

    YANG H O, SONG M H, YANG D H, et al. The evolution of laser solid forming of 300M ultra high strength steel organization[J]. Applied Laser, 2011,5(4):32-37(in Chinese).

    [15]

    WU X Y, LIN X, L X W, et al. Research on the microstructure and properties of 17-4 PH stainless steel by laser solid forming[J]. Chinese Journal of Lasers, 2011,38(2):37-42(in Chinese).

    [16]

    SUN Y Y, HUANG W. Progress of the application of selective laser processing technology in the field of oral medicine[J]. Journal of Dental Prevention and Treatment, 2014,22(2):109-112(in Chinese).

    [17]

    WANG Y, LI Y. Application and analysis of biological toxicity of Ti Zr alloy in oral repair[J]. Guide of China Medicine, 2012,10(12):234-235(in Chinese).

    [18]

    YAN X D. Study on preparation and properties of Ti Zr alloy laser solid forming powder for dental restoration[D]. Xi'an:The Fourth Military Medical University, 2005:6-8(in Chinese).

    [19]

    LI J M, WANG Ch M,YAN F, et al. Study on microstructure and mechanical properties of 6005A joint in laser-MIG hybrid welding[J]. Laser Technology,2014,38(6):733-737(in Chinese).

    [20]

    ZHANG M K, SUN G F, ZHANG W, et al. Study on corrosion property of laser surface alloyed Cr-CrB2 layers on stainless steel[J]. Laser Technology,2014,38(2):240-245(in Chinese).

    [21]

    HUANG W D. Laser solid forming[M]. Xi'an:Northwestern Polytechnical University Press,2007:16(in Chinese).

  • 期刊类型引用(1)

    1. 胥晗,孙科学,徐荣青. 基于LSPR效应的金属-半导体-金属光电探测器性能的研究. 激光与光电子学进展. 2025(03): 87-93 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 1
出版历程
  • 收稿日期:  2014-12-22
  • 修回日期:  2015-03-16
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回