Study on stochastic resonance gas weak signal detection
-
摘要: 为了解决检测煤矿复杂环境中的瓦斯信号时易受周围噪声干扰以至微弱信号被掩埋或产生异常数据的问题,提出一种基于随机共振的微弱瓦斯信号检测方法。采用欠采样原理对大频率信号尺度变换及粒子群算法优化系统结构参量,对大参量微弱信号在随机共振系统中的共振效果进行了理论分析和研究。结果表明,该方法可以以较低的采样频率,自适应地达到较好的共振效果;可有效地滤除噪声并增强系统辨识微弱信号的灵敏度以及信号检测的动态范围。该研究为瓦斯突出信息的早期辨识提供了一定的理论依据。Abstract: In order to detect the gas signals in complex environments of coal mine and solve the problem of the buried weal signal and the abnormal data because of surrounding noise interference on gas signal, a detection method for weak gas signal was introduced based on stochastic resonance. Sub-sampling method was used to transform large frequency signal scale and particle swarm optimization algorithm was used to optimize structural parameters. The resonance effect of large-parameter weak signal in a stochastic resonance system was analyzed. The results show that optimum matching between the nonlinear system, the input signal and the noise could be achieved adaptively with lower sampling frequency. The large-parameter multi-frequency weak signal can be distinguished from strong background noise effectively, and the detection sensitivity and dynamic range are enhanced. The research provides theory basic for early identification of gas outburst information.
-
-
[1] FU H, XIE S, XU Y S. Study on MPSO-WLS-SVM-based mine gas emission prediction model[J]. China Safety Science Journal, 2013, 23(5):56-61(in Chinese).
[2] FU H, JIANG W, SHAN X X. Study on coupling algorithm on coal mine gas emission forecast model[J]. Journal of China Coal Society, 2012, 37(4):654-658(in Chinese).
[3] DENG M, ZHANG G Sh, CHEN Q H. Forecast of coal and gas outburst based on time series of gas concentration[J]. Journal of China Coal Society, 2010, 35(2):260-263(in Chinese).
[4] DONG D W, LIU J, WANG H G. An adaptive method for predicting coal mine gas concentration and its application pre-warning[J]. China Safety Science Journal, 2013, 23(5):88-93(in Chinese).
[5] LEI Y G, HAN D, LIN J, et al. New adaptive stochastic resonance method and its application to fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(7):62-67(in Chinese).
[6] HAN D Y, DING X J, SHI P M. Multi-frequency weak signal detection based on EMD after de-noising by adaptive re-scaling frequency-shifted band-pass stochastic resonance[J]. Journal of Mechanical Engineering, 2013, 49(8):10-18(in Chinese).
[7] FAUVE S, HESLOT F. Stochastic resonance in a bistable system[J]. Physics Letters, 1983, A97(1):5-7.
[8] ZHU G Q, DING K, ZHANG Y, et al. Experimental research of weak signal detection based on the stochastic resonance of nonlinear system[J]. Acta Physica Sinica, 2010, 59(5):3001-3006(in Chin-ese).
[9] LENG Y G, WANG T Y. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy noise[J]. Acta Physica Sinica, 2003, 52(10):2432-2437(in Chinese).
[10] HU J X, ZENG J Ch. Selection on inertia weight of particle swarm optimization[J]. Computer Engineering, 2007, 33(11):193-195(in Chinese).
[11] YANG D X, HU Zh, YANG Y M. The analysis of stochastic resonance of periodic signal with large parameters[J]. Acta Physica Sinica, 2012, 61(8):1-10(in Chinese).
[12] LIANG Zh J, WANG K F, GU G Q, et al. Digital speckle image correlation method base of particle swarm optimization algorithm[J]. Laser Technology, 2014, 38(5):603-607(in Chinese).
[13] LI R Q, SHI Sh L, NIAN Q F, et al. Research on pattern recognition of gas explosion disaster risk in coal mines based on PSO-SVM[J]. China Safety Science Journal, 2013, 23(5):38-43(in Chinese).
[14] WAGDY M F, LUCAS M S P.A phase-measurement offset compensation technique suitable for automation[J]. IEEE Transaction on Instrumentation and Measurement, 1987, 36(3):721-724.
[15] OSTRANDER L E, PALOSKI W H, BARIE P S, et al. A computer algorithm to calculate P50 from a single blood sample[J]. IEEE Transactions on Biomedical Engineering, 1983, 30(4):250-254.
[16] YANG Sh L, SU Y B, HE J T, et al. Study of measurement accuracy of position sensitive detectors[J]. Laser Technology, 2014, 38(6):830-834(in Chinese).
[17] NICOLI J A G. Multi-periodical phase meter:US, 4157500[P].1979-07-05.
[18] FERNANDEZ-MARTINEZ J L, GARCIA-GONZALO E. Stochastic stability analysis of the linear continuous and discrete PSO models[J]. IEEE Transactions on Evolutionary Computation, 2010, 15(3):405-423.
[19] SHI Y, JU A S, LE Y F. Heterodyne interference signal processing method based on FPGA[J]. Laser Technology, 2012, 36(2):221-224(in Chinese).
-
期刊类型引用(5)
1. 白旭,胡辉. 基于快速傅里叶变换和互相关的多频微弱信号重构法. 电子测量与仪器学报. 2019(03): 168-175 . 百度学术
2. 张凯斐,张菊芳,王翠娥. 无线光纤通信网络衰减信号挖掘系统设计. 激光杂志. 2018(08): 174-177 . 百度学术
3. 李晋华,白鹏. 空间星载电子设备与地面通信信号检测仿真. 计算机仿真. 2018(11): 379-382 . 百度学术
4. 赵庭兵,曾曾. 光电检测系统的微弱信号采集与检测. 激光杂志. 2018(11): 158-161 . 百度学术
5. 肖利群. 基于自适应级联匹配的云光纤海量数据疏导模型. 激光杂志. 2016(09): 109-112 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 8
- 被引次数: 9