高级检索

基于慢光效应的解波分复用器的设计与研究

吕淑媛, 赵辉

吕淑媛, 赵辉. 基于慢光效应的解波分复用器的设计与研究[J]. 激光技术, 2015, 39(5): 617-620. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.007
引用本文: 吕淑媛, 赵辉. 基于慢光效应的解波分复用器的设计与研究[J]. 激光技术, 2015, 39(5): 617-620. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.007
LÜ Shuyuan, ZHAO Hui. Design and research of wavelength-division demultiplexer based on slow light waveguides[J]. LASER TECHNOLOGY, 2015, 39(5): 617-620. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.007
Citation: LÜ Shuyuan, ZHAO Hui. Design and research of wavelength-division demultiplexer based on slow light waveguides[J]. LASER TECHNOLOGY, 2015, 39(5): 617-620. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.007

基于慢光效应的解波分复用器的设计与研究

详细信息
    作者简介:

    吕淑媛(1976-),女,博士,副教授,现主要从事微纳光学器件及光子晶体光纤方面的研究。E-mail:mizhiyuan@sohu.com

  • 中图分类号: TN252

Design and research of wavelength-division demultiplexer based on slow light waveguides

  • 摘要: 为了设计一种基于正方晶格光子晶体波导的三端口解波分复用器,利用光子晶体的光子带隙特性和光在光子晶体慢光波导中的传输特性,并采用平面波展开法及时域有限差分法对解波分复用器的特性进行了理论分析,数值计算了解复用器的空间和光谱分布特性。结果表明,调整波导中与波导紧邻的第1排柱子的位置,使三部分波导中传输的慢光频率发生改变,通过合理的结构设计,利用慢光模式传输的特点将不同频率的光从不同的输出端输出,可实现解复用的目的。
    Abstract: In order to design three-port wavelength-division demultiplexer based on square lattice photonic crystal waveguide, wavelength-division demultiplexer was analyzed theoretically by using the characteristics of photonic band gap of photonic crystal and the transmission characteristics of slow light mode in photonic crystal, by using plane wave expansion method and finite difference time domain method. The spectral and spatial characteristics of wavelength-division demultiplexer were calculated numerically. The results show that adjusting the position of the column at the first row adjacent to the waveguide will change the frequency of slow light transmitted in three parts of waveguide. Based on the transmission characteristics of slow light, provided a reasonable structure design, the light beams at different frequencies can output from different output terminals, and the purpose of demultiplexing can be achieved.
  • [1]

    LIU Z H, ZHENG Y. Experimental study about the cavity of Yb3+-doped photonic crystal fiber laser[J].Laser Technology, 2014, 38(1):105-108 (in Chinese).

    [2]

    SONG B S, NODA S, ASANO T. Photonic devices based on in-plane hetero photonic crystals [J]. Science, 2003, 300(5625):1537.

    [3]

    CHUNG K B, HONG S W. Wavelength demultiplexers based on the superprism phenomena in photonic crystals[J]. Applied Physics Letters, 2002, 81(9):1549.

    [4]

    GERKEN M, MILLER D A B. Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structure[J]. IEEE Photonics Technology Letters, 2003, 15(8): 1097-1099.

    [5]

    JUGESSUR A, WU L, BAKHTAZAD A, et al.Compact and integrated 2-D photonic crystal super-prime filter-device for wavelength demultiplexing[J]. Optics Express, 2006, 14(4): 1632-1642.

    [6]

    MARTINEZ A, CUESTA F, MARTI J.Ultrashort 2-D photonic crystal directional couplers [J]. IEEE Photonics Technology Letters, 2003,15(5): 694-696.

    [7]

    KOSHIBA M. Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers.[J].Journal of Lightwave Technology, 2001,19(12): 1970-1975.

    [8]

    CHEN C C, CHEN C Y, WANG W K, et al. Photonic crystal directional couplers formed by InAlGaAs nano-rods[J]. Optics Express, 2005, 13(1): 38-43.

    [9]

    KIM S, PARK I, LIM H. Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing[J]. Optics Express, 2004, 12(23): 5518-5633.

    [10]

    SHARKAWY A, SHI S, PRATHER D W. Multichannel wavelength division multiplexing with photonic crystals[J]. Applied Optics, 2001,40(14): 2247-2252.

    [11]

    MARTINELLI L, BENISTY H, KHAYAM O, et al. Analysis and optimization of compact demultiplexer monitor based on photonic crystal waveguide[J].Journal of Lightwave Technology, 2007, 25(9): 2385-2394.

    [12]

    WU Y D, SHIH T T, LEE J J.High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications [J]. Applied Optics,2009, 48(25):F24-F30.

    [13]

    AKOSMAN A E, MUTLU M, KURT H, et al. Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides [J]. Physica, 2012, B407:4043-4047.

    [14]

    AKOSMAN A E, MUTLU M, KURT H, et al. Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides[J]. Optics Express, 2011, 19(24): 24129-24138.

    [15]

    BENISTY H, CAMBOURNAV C, LAERE F V. Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering[J].Journal of Lightwave Technology, 2010, 28(8): 1201-1208.

    [16]

    TANG F L, LIU G Q, LI L, et al. Three channels wavelength division multiplexing of two dimension triangular lattice photonic crystal[J]. Acta Photonica Sinica, 2012, 41(12): 1470-1473 (in Chinese) .

    [17]

    ZHOU X P, SHU J, LU B J, et al. Two-wavelength division demultiplexer based on triangular lattice photonic crystal resonant cavity[J]. Acta Optica Sinica, 2013, 33(1): 0123001 (in Chinese).

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-14
  • 修回日期:  2015-03-09
  • 发布日期:  2015-09-24

目录

    /

    返回文章
    返回