高级检索

基于传输矩阵法的纵向啁啾体光栅衍射特性

王军阵, 汪岳峰, 白慧君

王军阵, 汪岳峰, 白慧君. 基于传输矩阵法的纵向啁啾体光栅衍射特性[J]. 激光技术, 2015, 39(1): 61-64. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.012
引用本文: 王军阵, 汪岳峰, 白慧君. 基于传输矩阵法的纵向啁啾体光栅衍射特性[J]. 激光技术, 2015, 39(1): 61-64. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.012
WANG Junzhen, WANG Yuefeng, BAI Huijun. Diffraction characteristics of longitudinal chirped volume grating based on transfer matrix algorithm[J]. LASER TECHNOLOGY, 2015, 39(1): 61-64. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.012
Citation: WANG Junzhen, WANG Yuefeng, BAI Huijun. Diffraction characteristics of longitudinal chirped volume grating based on transfer matrix algorithm[J]. LASER TECHNOLOGY, 2015, 39(1): 61-64. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.012

基于传输矩阵法的纵向啁啾体光栅衍射特性

详细信息
    作者简介:

    王军阵(1984-),男,博士研究生,主要研究方向为激光合成等方面。

    通讯作者:

    汪岳峰, E-mail:wyfmail@sina.com

  • 中图分类号: 

    O436.1;TN253

Diffraction characteristics of longitudinal chirped volume grating based on transfer matrix algorithm

  • 摘要: 为了研究纵向啁啾体光栅的光谱衍射特性,采用传输矩阵方法进行了分析,研究了光栅的厚度、折射率调制系数和啁啾波长范围对纵向啁啾体光栅中心衍射效率的影响。结果表明,随着光栅厚度的增加,中心衍射效率随之增大;随着光栅折射率调制系数的增大,中心衍射效率也随之逐渐增加;而随着啁啾波长范围的增大,纵向啁啾体光栅的中心衍射效率则逐渐减小。此研究结果对大尺寸啁啾体光栅的设计制作有一定的参考价值。
    Abstract: In order to study diffraction characteristics of longitudinal chirped volume Bragg gratings, transfer matrix algorithm was used. Effects of the thickness, refractive index modulation and chirped wavelength range on the central diffraction efficiency of the longitudinal chirped volume Bragg gratings were calculated. The results show that central diffraction efficiency increases with the increase of the thickness and the refractive index modulation of the Bragg grating. However, with the increase of the chirped wavelength range, the central diffraction efficiency decreases. The research results have certain reference value for design and manufacture of large size of chirped volume Bragg gratings.
  • [1]

    WANG J Z, WANG Y F, BAI H J. Study on multi-channel spectral beam combined characteristics based on volume Bragg gratings[J]. Laser Technology, 2012, 36(5):593-596(in Chinese).

    [2]

    LIU B, LI J. Study about spectral beam combining with volume Bragg grating by means of Gaussian apodization technique[J]. Laser Technology, 2013, 37(5):656-659(in Chinese).

    [3]

    PABOEUF D, VIJAYAKUMAR D, JENSEN O B, et al. Volume Bragg grating external cavities for the passive phase locking of high brightness diode laser arrays: theoretical and experimental study[J]. Journal of the Optical Society of America, 2011, B28(5):1289-1299.

    [4]

    VENUS G B, SEVIAN A, SMIRNOV V I, et al. High brightness narrow line laser diode source with volume Bragg grating feedback[J]. SPIE, 2005, 5711:166-176.

    [5]

    GALVANAUSKAS A, HEANEY A, ERDOGAN T, et al. Use of volume chirped Bragg grating for compact high-energy chirped pulse amplification circuits[J].Lasers and Electro-optics, 1998, 6(3):362.

    [6]

    GLEBOV L B, GLEBOVAL L N, SMIRNOV V I, et al. Laser damage resistance of photo-thermo-refractive glass Bragg gratings[J]. Proceedings of Solid State and Diode Lasers Technical Review, 2004, 15(6):3-6.

    [7]

    LIAO K H, CHENG M Y, FLECHER E, et al. Large-aperture chirped volume Bragg grating based fiber CAP system[J]. Optics Express, 2007, 15(8):4876-4882.

    [8]

    CHANG G Q, LIU Ch H, LIAO K H, et al. 50W chirped volume Bragg grating based fiber CPA at 1055nm[C]//Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. Baltimore,New York,USA:IEEE, 2007:1-2.

    [9]

    CHANG G Q, REVER M, SMIRNOV V, et al. 32W femtosecond Yb-fiber CPA system based on chirped volume Bragg gratings[C]//Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. Baltimore,New York,USA:IEEE, 2008:1-2.

    [10]

    GLEBOV L B, MOKHOV S V, SMIRNOV V I, et al. Analytic theory of light reflection from a chirped volume Bragg grating[C]//Novel Optical Architectures in Emerging Technologies Ⅱ. San Jose,USA: Frontiers in Optics, 2009:5.

    [11]

    BELAI O V, PODIVILOV E V, SHAPIRO D A. Group delay in Bragg grating with linear chirp[J]. Optics Communications, 2006, 266(2):512-520.

    [12]

    GLEBOV L B, LUMEAU J, MOKHOV S, et al. Reflection of light by composite volume holograms: Fresnel corrections and Fabry-Perot spectral filtering[J]. Journal of the Optical Society of America, 2008, 25(3):751-764.

    [13]

    MOHARAM M G, GAYLORD T K. Chain-matrix ayalysis of arbitrary-thickness dielectric reflection gratings[J]. Journal of the Optical Society of America, 1982, 72(2):187-190.

    [14]

    SHARLANDJIEV P, MATEEVA T. Normal incidence holographic mirrors by the characteristic matrix method: numerical examples[J]. Journal of Optics, 1985, 16(4): 185-189.

    [15]

    FENG J S, YUAN X, ZHANG X, et al. Simulation of chirped volume Bragg grating with a partition integration method[C]//Progress In Electromagnetics Research Symposium Proceedings. Suzhou, China: Soochow University, 2011:1295-1298.

    [16]

    KOGELNIK H. Coupled wave theory for thick hologram gratings[J]. The Bell System Technical Journal, 1969, 48(9) :2909-2947.

    [17]

    MOHARAM M G, GAYLORD T K. Rigorous coupled wave analysis of planar grating diffraction[J]. Journal of the Optical Society of America, 1981, 17(7):811-818.

    [18]

    McCARTNEY D J. The analysis of volume reflection gratings using optical thin-film techniques[J]. Optical and Quantum Electronics, 1989, 21(2):98-107.

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 修回日期:  2014-01-19
  • 发布日期:  2015-01-24

目录

    /

    返回文章
    返回