高级检索

1维石墨烯光子晶体的电磁吸收特性

宁仁霞, 刘少斌, 章海锋, 孔祥鲲, 卞博锐

宁仁霞, 刘少斌, 章海锋, 孔祥鲲, 卞博锐. 1维石墨烯光子晶体的电磁吸收特性[J]. 激光技术, 2015, 39(1): 28-32. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.006
引用本文: 宁仁霞, 刘少斌, 章海锋, 孔祥鲲, 卞博锐. 1维石墨烯光子晶体的电磁吸收特性[J]. 激光技术, 2015, 39(1): 28-32. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.006
NING Renxia, LIU Shaobin, ZHANG Haifeng, KONG Xiangkun, BIAN Borui. Electromagnetic absorption characteristics of 1-D graphene photonic crystals[J]. LASER TECHNOLOGY, 2015, 39(1): 28-32. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.006
Citation: NING Renxia, LIU Shaobin, ZHANG Haifeng, KONG Xiangkun, BIAN Borui. Electromagnetic absorption characteristics of 1-D graphene photonic crystals[J]. LASER TECHNOLOGY, 2015, 39(1): 28-32. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.006

1维石墨烯光子晶体的电磁吸收特性

基金项目: 

国家自然科学基金资助项目(61307052);航空科学基金资助项目(20121852030);江苏省自然科学基金资助项目(BK2011727);黄山学院科研资助项目(2010xkj006);江苏省普通高校研究生科研创新计划资助项目(CXZZ13-0166);安徽省教育厅自然科学研究资助项目(KJ2013B267);大学生创新创业训练计划资助项目(201210375030)

详细信息
    作者简介:

    宁仁霞(1978-),女,讲师,主要从事等离子体光子晶体、石墨烯光子晶体电磁特性研究。E-mail:nrxxiner@hsu.edu.cn

  • 中图分类号: 

    O734

Electromagnetic absorption characteristics of 1-D graphene photonic crystals

  • 摘要: 为了研究1维石墨烯光子晶体在可见光波段的吸收特性,采用传输矩阵的方法进行了理论分析和数值仿真,得到了1维石墨烯吸收特性与石墨烯层数、缺陷层介质厚度、电磁波模式有关的结果。结果表明,增加石墨烯层数时,对波长为556nm左右的绿光的吸收作用明显增强;缺陷层介质厚度增加时会引起吸收峰的增加;在TE模式下,入射角对石墨烯光子晶体吸收特性影响较小。该研究结果为1维石墨烯光子晶体吸收器的设计提供了理论依据。
    Abstract: In order to study the absorption characterisctics of 1-D graphene photonic crystal in the visible band, theoretical analysis and numerical simulation were conducted by using transfer matrix method. The dependance of absorption characterisctics of 1-D graphene on graphene layers, dielectric thickness of defect layers, and electromagnetic mode were obtained. The results show that the absorption with green light of wavelength of about 556nm is enhanced significantly with the increasing of the layers of graphene. The absorption peak will increase with the increasing of dielectric thickness of defect layer. In the TE mode, the angle of incidence has a little effect on the absorption characterisctics of graphene photonic crystal. The results provide the theoretical basis for the study of 1-D graphene photonic crystal absorbers.
  • [1]

    JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J].Phyical Review Letters, 1987,58(23):2486-2489.

    [2]

    YABLONOVITCH E.Inhibited spontaneous emission in solid-state physics and electronics[J].Physical Review Letters, 1987,58(20): 2059-2061.

    [3]

    ZHANG H F,ZHENG J P,ZHU R J. Analysis of transmission characteristics of 1-D ternary magnetized plasma photonic crystals[J]. Laser Technology,2012,36(2):208-216(in Chinese).

    [4]

    XIONG C X, JIANG L J. Influence of material dispersion on defect modes of 1-Dphotonic crystal[J]. Laser Technology,2013,37(6):743-746(in Chinese).

    [5]

    GOTO T, INOUE M.Magnetophotonic crystal comprising electrooptical layer for controlling helicity of light[J]. Journal of Applied Physics, 2012,111(7): 07A913.

    [6]

    LIU Sh B,ZHU Ch X,YUAN N Ch.FDTD simulation for plasma photonic crystals[J].Acta Physica Sinica,2005,54(6):2804-2808(in Chinese).

    [7]

    WANG L G, CHEN H, ZHU S Y.Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials[J].Physical Review, 2004,B70(24):245102.

    [8]

    ZHANG H F, LIU Sh B, KONG X K, et al. The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure[J].Physics of Plasmas, 2013, 20(4): 042110.

    [9]

    HOJO H, MASE A.Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals[J]. Plasma and Fusion Research, 2004, 80(4): 89-92.

    [10]

    LI W, ZHANG H T,GONG M L,et al.Plasma photonic crystal[J].Optical Technique, 2004,30(1):263-266(in Chinese).

    [11]

    KONG X K,WANG Y Sh,YANG H W,et al. Study on cut-off frequency of 1-D plasma photonic crystals[J].Laser Technology,2011,35(1):126-129(in Chinese).

    [12]

    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696): 666-669.

    [13]

    NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308.

    [14]

    BONACCORSO F,SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J].Nature Photonics,2010,4(9):611-622.

    [15]

    FURCHI M, URICH A, POSPISCHIL A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters,2012,12(6):2773-2777.

    [16]

    FERREIRA A, PERES N M R, RIBEIRO R M, et al. Graphene-based photodetector with two cavities[J].Physical Review,2012,B85(11):115438.

    [17]

    AREFINIA Z,ASGARI A.Novel attributes in the scaling and performance considerations of the one-dimensional graphene-based photonic crystals for terahertz applications[J].Physica,2013,E54(12):34-39.

    [18]

    VINCENTI M A, de CEGLIA D, GRANDE M, et al. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect[J].Optics Letters,2013,38(18): 3550-3553.

    [19]

    LIU J T, LIU N H, LI J, et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J].Applied Physics Letters,2012,101(5):052104.

    [20]

    WANG H. An eigen matrix method for obtaining the band structure of photonic crystals [J] Acta Physica Sinica, 2004,50(11):2172-2178(in Chinese).

    [21]

    BRUNA M, BORINI S.Optical constants of graphene layers in the visible range[J].Applied Physics Letters,2009,94(3):031901.

    [22]

    PARIDA S, ROUT S K, CAVALCANTE L S, et al. Structural refinement, optical and microwave dielectric properties of BaZrO3 [J]. Ceramics International, 2012,38(3):2129-2138.

    [23]

    LUPINA G, DABROWSKI J, DUDEK P, et al. Dielectric constant and leakage of BaZrO3 films[J].Applied Physics Letters,2009,94(15):152903.

    [24]

    FUENZALIDA V M, PILLEUX M E. Hydrothermally grown BaZrO3 films on zirconium metal: microstructure, X-ray photoelectron spectroscopy, and Auger electron spectroscopy depth profiling[J].Journal of Materials Research,1995,10(11):2749-2754.

    [25]

    FREDERIKSE H P R.CRC handbook of chemistry and physics[M]. Boca Raton, FL,USA:CRC Press, 2003:195.

    [26]

    WINDT D L, CASH W C, Jr, SCOTT M, et al. Optical constants for thin films of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt, and Au from 24to 1216[J].Applied Optics,1988, 27(2):246-278.

    [27]

    PALIK E D.Handbook of optical constants of solids[M].New York,USA: Elsevier,1998:240-249.

    [28]

    RAKIC A D, DJURISIC A B, ELAZAR J M,et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J].Applied Optics,1998,37(22):5271-5283.

    [29]

    ZHANG Y, TANG T T, GIRIT C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J].Nature,2009,459(7248):820-823.

    [30]

    ZHANG H F,ZHENG J P,YANG G H.The forbidden band gap of tiame-varying magnetized plasma photonic crystals[J]. Laser Physics,2011,30(1):74-78(in Chinese).

    [31]

    FANG Y T, HE S. Transparent structure consisting of metamaterial layers and matching layers[J].Physical Review, 2008,A78(2):2381301.

  • 期刊类型引用(2)

    1. 汤炳书,孙成祥. 多层石墨烯纳米膜的中红外窄带滤波特性调节. 光学精密工程. 2019(12): 2549-2554 . 百度学术
    2. 马荣坤,张亦驰,方云团. 基于石墨烯和1维光子晶体的THz宽带吸收器. 激光技术. 2017(05): 723-727 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 6
出版历程
  • 收稿日期:  2014-02-15
  • 修回日期:  2014-02-23
  • 发布日期:  2015-01-24

目录

    /

    返回文章
    返回