高级检索

光阑约束和离轴失调Lohmann系统的分数傅里叶变换

于永江, 陈建农, 王德法, 郝金光

于永江, 陈建农, 王德法, 郝金光. 光阑约束和离轴失调Lohmann系统的分数傅里叶变换[J]. 激光技术, 2008, 32(1): 109-112.
引用本文: 于永江, 陈建农, 王德法, 郝金光. 光阑约束和离轴失调Lohmann系统的分数傅里叶变换[J]. 激光技术, 2008, 32(1): 109-112.
YU Yong-jiang, CHEN Jian-nong, WANG De-fa, HAO Jin-guang. Fractional Fourier transform of hard-edge apertured and misaligned Lohmann’s optical system[J]. LASER TECHNOLOGY, 2008, 32(1): 109-112.
Citation: YU Yong-jiang, CHEN Jian-nong, WANG De-fa, HAO Jin-guang. Fractional Fourier transform of hard-edge apertured and misaligned Lohmann’s optical system[J]. LASER TECHNOLOGY, 2008, 32(1): 109-112.

光阑约束和离轴失调Lohmann系统的分数傅里叶变换

基金项目: 

国家自然科学基金资助项目(10604045)

详细信息
    作者简介:

    于永江(1966- ),男,副教授,从事自聚焦透镜应用和激光光束变换研究.E-mail:ldyuyongjiang@yahoo.com.cn

  • 中图分类号: O438.2

Fractional Fourier transform of hard-edge apertured and misaligned Lohmann’s optical system

  • 摘要: 为了研究受硬边光阑约束及失调Lohmann光学系统对分数傅里叶变换的影响,采用了平顶多高斯光束模型模拟硬边光阑,推导了平面光波在受硬边光阑约束和系统透镜离轴时的Lohmann 型分数傅里叶变换光学系统中传播的解析表达式;计算机模拟了受半径为7.696cm的硬边光阑约束和透镜离轴失调量时的输出.结果表明,在有硬边光阑约束和离轴失调时Lohmann两种结构并不等效.
    Abstract: To study the influence of hard-edge apertured and misaligned Lohmann's optical system on fractional Fourier transforms,the flat-topped multi-Gaussian beam model was adopted to simulate hard-edge apertures.The analytical expressions for transformation of plane wave in a hard-edge apertured and off-axis Lohmann's fractional Fourier transform optical system were derived.The numerical simulation for outputs when the system was apertured with aperture radius of 7.696cm and the lenses were off-axis was also given.It is shown that the two Lohmann's setups are not equivalent when they are apertured and misaligned.
  • [1]

    MENDLOVIC D,OZAKTAS H M.Fractional Fourier transforms and their optical implementation Ⅰ[J].J O S A,1993,A10(9):1875-1881.

    [2]

    OZAKTAS H M,MENDLOVIC D.Fractional Fourier transforms and their optical implementation Ⅱ[J].J O S A,1993,A10(12):2522-2531.

    [3]

    OZAKTAS H M,MENDLOVIC D.Fourier transforms of fractional order and their optical interpretation[J].Opt Commum,1993,101:163-169.

    [4]

    LOHMANN A W.Image rotation,wigner rotation,and fractional Fourier transform[J].J O S A,1993,A10(10):2181-2186.

    [5]

    ZHAO G P,LÜB D.Propagation of Gaussian beams passing through complicated ABCD optical system with internal hard-edge aperture[J].Laser Technology,2003,27(4):299-301(in Chinese).

    [6]

    LIU Y X,JI X L,LÜB D.Comparative study of simulation algorithm for hard-edge optics[J].Laser Technology,2004,28(6):652-654(in Chinese).

    [7]

    LIU H Zh,XU R W,LIU L R,et al.Far-field approximation and divergence of Gaussian beam with phase aberrations diffracted by a circular aperture[J].Acta Optica Sinica,2005,26(1):131-135(in Chinese).

    [8]

    SUN D,ZHAO D W.Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system[J].J O S A,2005,A22(8):1683-1690.

    [9]

    MAO H D,ZHAO D W.Different models for a hard-aperture function and corresponding approximate analytical propagation equations of a Gaussian beam through an apertured optical system[J].J O S A,2005,A22(4):647-653.

    [10]

    TOVAR A A.Propagation of flat-topped multi-Gaussian laser beams[J].J O S A,2001,A18(8):1897-1904.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-11-23
  • 修回日期:  2007-01-08
  • 发布日期:  2008-02-24

目录

    /

    返回文章
    返回