高级检索

高分子材料与金属激光微焊接实验与仿真分析

陈玉娇, 郭钟宁, 连海山

陈玉娇, 郭钟宁, 连海山. 高分子材料与金属激光微焊接实验与仿真分析[J]. 激光技术, 2013, 37(6): 760-765. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.012
引用本文: 陈玉娇, 郭钟宁, 连海山. 高分子材料与金属激光微焊接实验与仿真分析[J]. 激光技术, 2013, 37(6): 760-765. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.012
CHEN Yu-jiao, GUO Zhong-ning, LIAN Hai-shan. Finite element simulation and experimental study about laser micro-joining between biopolymer and metal[J]. LASER TECHNOLOGY, 2013, 37(6): 760-765. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.012
Citation: CHEN Yu-jiao, GUO Zhong-ning, LIAN Hai-shan. Finite element simulation and experimental study about laser micro-joining between biopolymer and metal[J]. LASER TECHNOLOGY, 2013, 37(6): 760-765. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.012

高分子材料与金属激光微焊接实验与仿真分析

基金项目: 

国家自然科学基金资助项目(51175091)

详细信息
    作者简介:

    陈玉娇(1987-),女,硕士研究生,研究领域为先进制造技术和激光加工技术。

    通讯作者:

    郭钟宁

  • 中图分类号: TG456.7

Finite element simulation and experimental study about laser micro-joining between biopolymer and metal

  • 摘要: 为了更好地理解高分子材料与金属材料的激光微焊接机理,利用软件ANSYS建立高斯热源模型,对生物高分子材料聚对苯二甲酸乙二酯(PET)与医用金属材料纯钛的激光微焊接温度场进行了动态模拟;利用红外热像仪测定焊接过程瞬态最高温度变化,用超景深数字显微镜测量实际焊接中焊缝宽度,其测量结果与仿真结果基本吻合;最后对温度场仿真结果进行了分析。结果表明,移动热源前方的等温线分布密集且温度梯度大,后方的等温线稀疏且温度梯度小;在垂直于焊缝中心不同位置的节点都存在着快速升温及相对缓慢的降温过程,同时,节点越靠近焊缝中心,温度变化越剧烈,所能达到的最高温度就越大。该结果证明了所建立的移动高斯面热源模型在激光微焊接PET/Ti温度场模拟中的适用性。
    Abstract: In order to understand the laser micro-joining mechanism better, based on the ANSYS, finite element simulation software, the Gaussian heat source model was adopted to simulate the dynamic temperature filed in the process of welding polyethylene terephthalate (PET) and biomedical Ti. The transition highest peak temperature variation during the process of welding was recorded with a thermal infrared imager and the actual welding seam width was measured with a digital microscope in super depth of field. The simulation results are conforming to the experimental results. Simulation result suggests that the isotherm is as an ellipse. Meanwhile, there is intensive isotherm and larger temperature gradient in the front of the spot center, on the contrary, sparser isotherm and smaller temperature gradient at the back of the spot center, which verifies the applicability of the model established by moving heat source during the laser welding based on PET/Ti sheets applying to the temperature field simulation.
  • [1]

    ZHOU Y. Microjoing and nanojoining[M].Beijing: China Machine Press, 2010: 2-6(in Chinese).

    [2]

    FARAZILA Y, MIYASHITA Y, HUA W, et al.YAG laser spot welding of pet and metallic materials[J]. Laser Micro/Nanoengineering, 2011,6(1): 69-74.

    [3]

    AUDRONIS M, HINDER S J.A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges[J]. Thin Solid Films, 2011,520(5): 1564-1570.

    [4]

    WU Y D, GUO A H.The development and research status of biomedical Ti alloys[J]. Development and Application of Materials, 2010, 25(2):81-85 (in Chinese).

    [5]

    GOWER H L, PIETERS R G M.Pulse laser welding of metal-polymer sandwich materials using pulse shaping[J].Laser Applications, 2006,18(1):35-41.

    [6]

    WANG X P. Laser transmission joint between PET and titanium for biomedical application[J]. Materials Processing Technology, 2010, 210(13):1761-1771.

    [7]

    WANG X, SONG X, JIANG M, et al. Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology[J].Optics and Laser Technology,2012, 44(3): 656-663.

    [8]

    TILLMANN W, ELREFAEY A, WOJARSKI L. Toward process optimization in laser welding of metal to polymer[J]. Materialwissenschaft und Werkstofftechnik, 2010, 41(10):879-883.

    [9]

    WAHBA M, KAWAHITO Y, KATAYAMA S. Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate[J]. Journal of Materials Processing Technology, 2011, 211(6): 1166-1174.

    [10]

    LU Y, ZHANG J. Modeling and simulation of laser welding for aluminum alloy[J]. Hot Working Technology, 2012, 41(1):130-133 (in Chinese).

    [11]

    CAO D D, WANG K Sh, YANG Y N. Finite element simulation of temperature field ofthin tubes irradiated by ring lasers[J]. Laser Technology, 2010, 34(6): 753-756 (in Chinese).

    [12]

    QI L J, ZHU X, ZHU Ch H. Numerical simulation and experiment research of laserdamage of porcelain insulator surface[J]. Laser Technology, 2011, 35(6):844-849 (in Chinese).

    [13]

    HU M Y, SHI J W. Effect of aluminum alloy surface absorptivity on weld shape[J].Hot Working Technology, 2009, 38(21): 150-151(in Chinese).

    [14]

    WU Ch S. Welding thermal process and molten pool form[M].Beijing: China Machine Press, 2007: 56-68 (in Chinese).

    [15]

    CHEN Y B. Modern laser welding technology[M]. Beijing: China Science and Technology Press, 2005: 35-39 (in Chinese).

计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-17
  • 修回日期:  2013-04-27
  • 发布日期:  2013-11-24

目录

    /

    返回文章
    返回