Frequency chirps and spectra of optical pulses propagating in optical fibers with cubic-quintic nonlinearity
-
摘要: 为了探讨光纤的五阶非线性对光脉冲传输的影响,利用同时考虑三阶和五阶非线性效应的非线性薛定谔方程,在忽略光纤色散的情况下,解析并计算研究了超高斯光脉冲的非线性相移、频率啁啾。数值模拟了光脉冲传输的功率频谱。结果表明,与只有三阶非线性折射率的情形相比,正五阶非线性折射率的存在使光脉冲在光纤中传输的非线性相移和最大频率啁啾增大,使无啁啾光脉冲的频谱宽度变宽,谱峰数目增多,高斯脉冲初始啁啾对频谱的影响与三阶非线性折射率的情形类似;负五阶非线性折射率则使光脉冲传输的非线性相移和频率啁啾呈现新的特点,并使无啁啾光脉冲的频谱宽度变窄,谱峰数目减少。Abstract: The aim of the paper is to study the effect of the quintic nonlinearity of an optical fiber on the propagation of optical pulses.Utilizing the cubic-quintic nonlinear Schrdinger equation in which the dispersion of optical fibers is neglected,the nonlinear phase shifts and frequency chirps of super-Gaussian optical pulses are calculated and investigated analytically.The power spectra of optical pulses are numerically simulated as well.The results show that the positive quintic nonlinear refractive index makes the nonlinear phase shifts and the maximum frequency chirps of optical pulses larger,the spectral width of unchirped optical pulses wider and the number of spectral peaks more than those of cubic nonlinear refractive index.The influence of initial chirps of Gaussian optical pulses on the spectra is similar to that of cubic nonlinear refractive index.In case of the negative quintic nonlinear refractive index,the nonlinear phase shifts and frequency chirps take on new characteristics.The negative quintic nonlinear refractive index also makes the width of unchirped optical pulses narrower and the number of spectral peaks less.
-
Keywords:
- nonlinear optics /
- cubic-quintic nonlinearity /
- frequency chirps /
- power spectra
-
-
[1] TZOAR N,JAIN M.Self-phase modulation in long geometry optical waveguides[J].Phys Rev,1981,A23(3):1266~1270.
[2] HEBER R C,HICKMANN J M,GOUVEIA-NETO A S.Self-phase modulation and induced phase modulation of noisy radiation in single-mode optical fibers[J].Phys Rev,1992,A45(11):8268~8276.
[3] AGRAWAL G P.Nonlinear fiber optics[M].2nd ed,New York:Academic Press,1995.89~101,238~276.
[4] SUKHORUKOV A A,KIVSHAR Y S,EISENBERG H S et al.Spatial optical solitons in waveguide arrays[J].IEEE J Q E,2003,39(1):31~50.
[5] WANG X,LU D,LIN X D et al.Power gain of perturbation traveling inside amplifying nonlinear media in terms of Breakup-integral[J].Laser Technology,2002,26(6):466~467,470(in Chinese).
[6] LI D Y,HAN S,TANG Y L et al.Propagation of chirped pulses inside self-action temporal guide[J].Laser Technology,1999,23(2):109~112.(in Chinese).
[7] TANEV S,PUSHKAROV D I.Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibers and waveguides[J].Opt Commun,1997,141:322~328.
[8] PALACIOS S L,FERNNDEZ-DíAZ J M.Black optical solitons for metia with parabolic nonlinearity law in the presence of fourth order dispersion[J].Opt Commun,2000,178:457~460.
[9] DIMITREVSKI K,REIMHULT E,SVENSSON E et al.Analysis of stable self-trapping of laser beams in cubic-quintic nonlinear media[J].Phys Lett,1998,A248(5/6):369~376.
[10] ZHONG X Q,CHEN J G,LI D Y.Modulation instability in the decreasing dispersion fibers with quintic nonlinearity[J].Laser Technology,2006,30(1):27~30(in Chinese).
[11] REN Z J,WANG J,YANG A L et al.Effect of quintic nonlinearity on modulation instability in the anomalous dispersion regime of fiber[J].Chinses Journal of Laser,2004,31(5):595~598(in Chinese).
[12] HONG W P.Modulation instability of optical waves in the high dispersive cubic-quintic nonlinear Schrodinger equation[J].Opt Commun,2002,213:173~182.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 13