高级检索

一种分数相关尺度畸变不变识别新方法

李俊, 王红霞, 何俊发, 何彬

李俊, 王红霞, 何俊发, 何彬. 一种分数相关尺度畸变不变识别新方法[J]. 激光技术, 2005, 29(2): 180-182.
引用本文: 李俊, 王红霞, 何俊发, 何彬. 一种分数相关尺度畸变不变识别新方法[J]. 激光技术, 2005, 29(2): 180-182.
LI Jun, WANG Hong-xia, HE Jun-fa, He Bin. A new scale distortion invariant pattern recognition method by fractional correlation[J]. LASER TECHNOLOGY, 2005, 29(2): 180-182.
Citation: LI Jun, WANG Hong-xia, HE Jun-fa, He Bin. A new scale distortion invariant pattern recognition method by fractional correlation[J]. LASER TECHNOLOGY, 2005, 29(2): 180-182.

一种分数相关尺度畸变不变识别新方法

详细信息
    作者简介:

    李俊(1978- ),男,博士研究生,主要从事光学信息处理和功率超声方面的研究.王红霞,通讯联系人.E-mail:redlightw@163.com

    李俊(1978- ),男,博士研究生,主要从事光学信息处理和功率超声方面的研究.王红霞,通讯联系人.E-mail:redlightw@163.com

    通讯作者:

    王红霞,E-mail:redlightw@163.com

  • 中图分类号: O438.2

A new scale distortion invariant pattern recognition method by fractional correlation

  • 摘要: 推导了“菲涅耳衍射透镜相位变换”及“透镜相位变换菲涅耳衍射”两种光学单元所遵从的约束关系,并基于此提出了一种分数相关尺度畸变不变识别方法。数值模拟试验结果表明,对于一个尺度畸变的待识别输入,当传统相关已无法正确识别时,该方法仍能够较好地识别畸变目标。
    Abstract: The constraints between two units are analyzed.Based on the results and fractional correlation theory,a new scale distortion invariant pattern recongnition method is proposed.Simulation results show that when a scale distortion inputimage can't berightly recognized by the conventional correlation,it can be recognized well with the method.
  • [1]

    ROTH M W.Survey of neural network technology for automatic target recognition[J].IEEE Trans Neural Net,1990,1(1):28~43.

    [2]

    HSU Y N,ARSENAULT H H.Optical pattern recognition using circular harmonic expansion[J].Appl Opt,1982,21(22):4016~4019.

    [3]

    CASASENT D.Unified synthetic discrimination function computational formulation[J].Appl Opt,1984,23(10):1620~1627.

    [4]

    MENDLOVIC D,OZAKTAS H M,LOHMANN A W.Fractional correlation[J].Appl Opt,1995,34(2):303~309.

    [5]

    MENDLOVIC D,OZAKATAS H M.Fractional Fourier transforms and their optical implementation[J].J O S A,1993,A10(9):1875~1881.

    [6]

    LOHMANN A W.Image rotation,wigner rotation and the fractional Fourier transform[J].J O S A,1993,A10(10):2181~2186.

    [7]

    BITRAN Y,ZALEVSKY Z,MENDLOVIC D et al.Fractional correlation operation: performance analysis[J].Appl Opt,1996,35(2):297~303.

    [8]

    LOHMANN A W,ZALEVSKY Z,MENDLOVIC D.Synthesis of pattern recognition filters for fractional Fourier processing[J].Opt Commun,1996,128(4/6):199~204.

    [9]

    HAN L,LIU Sh T,WANG Q et al.The performance of fractional correlation applied in distortion-invariant pattern recognition[J].Acta Photonica Sinica,2000,29(2):131~136.

    [10]

    HUA J W,LIU L R,LI G Q.Some basic fractional Fourier transform units[J].Acta Optica Sinica,1997,17(8):1040~1044.

    [11] 李俊,何俊发,王红霞.分数傅里叶变换的光学实现[A].第16届全国红外科学技术交流会论文集[C].武汉:红外与激光工程编辑部,2003.765~768.
    [12]

    CANDAN C,KUTAY M A,OZAKTAS H M.The discrete fractional Fourier transform[J].IEEE Trans Signal Processing,2000,48(5):1329~1337.

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-03-01
  • 修回日期:  2004-06-20
  • 发布日期:  2005-03-24

目录

    /

    返回文章
    返回