A new scale distortion invariant pattern recognition method by fractional correlation
-
摘要: 推导了“菲涅耳衍射透镜相位变换”及“透镜相位变换菲涅耳衍射”两种光学单元所遵从的约束关系,并基于此提出了一种分数相关尺度畸变不变识别方法。数值模拟试验结果表明,对于一个尺度畸变的待识别输入,当传统相关已无法正确识别时,该方法仍能够较好地识别畸变目标。
-
关键词:
- 尺度畸变不变模式识别 /
- 分数傅里叶变换 /
- 分数相关 /
- 光学模式识别
Abstract: The constraints between two units are analyzed.Based on the results and fractional correlation theory,a new scale distortion invariant pattern recongnition method is proposed.Simulation results show that when a scale distortion inputimage can't berightly recognized by the conventional correlation,it can be recognized well with the method. -
-
[1] ROTH M W.Survey of neural network technology for automatic target recognition[J].IEEE Trans Neural Net,1990,1(1):28~43.
[2] HSU Y N,ARSENAULT H H.Optical pattern recognition using circular harmonic expansion[J].Appl Opt,1982,21(22):4016~4019.
[3] CASASENT D.Unified synthetic discrimination function computational formulation[J].Appl Opt,1984,23(10):1620~1627.
[4] MENDLOVIC D,OZAKTAS H M,LOHMANN A W.Fractional correlation[J].Appl Opt,1995,34(2):303~309.
[5] MENDLOVIC D,OZAKATAS H M.Fractional Fourier transforms and their optical implementation[J].J O S A,1993,A10(9):1875~1881.
[6] LOHMANN A W.Image rotation,wigner rotation and the fractional Fourier transform[J].J O S A,1993,A10(10):2181~2186.
[7] BITRAN Y,ZALEVSKY Z,MENDLOVIC D et al.Fractional correlation operation: performance analysis[J].Appl Opt,1996,35(2):297~303.
[8] LOHMANN A W,ZALEVSKY Z,MENDLOVIC D.Synthesis of pattern recognition filters for fractional Fourier processing[J].Opt Commun,1996,128(4/6):199~204.
[9] HAN L,LIU Sh T,WANG Q et al.The performance of fractional correlation applied in distortion-invariant pattern recognition[J].Acta Photonica Sinica,2000,29(2):131~136.
[10] HUA J W,LIU L R,LI G Q.Some basic fractional Fourier transform units[J].Acta Optica Sinica,1997,17(8):1040~1044.
[11] 李俊,何俊发,王红霞.分数傅里叶变换的光学实现[A].第16届全国红外科学技术交流会论文集[C].武汉:红外与激光工程编辑部,2003.765~768. [12] CANDAN C,KUTAY M A,OZAKTAS H M.The discrete fractional Fourier transform[J].IEEE Trans Signal Processing,2000,48(5):1329~1337.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 6