高级检索

湍流大气中传输光波的波相位结构解析函数

张逸新, 陶纯堪

张逸新, 陶纯堪. 湍流大气中传输光波的波相位结构解析函数[J]. 激光技术, 2004, 28(4): 337-339.
引用本文: 张逸新, 陶纯堪. 湍流大气中传输光波的波相位结构解析函数[J]. 激光技术, 2004, 28(4): 337-339.
ZHANG Yi-xin, TAO Chun-kan. Wave structure function of light wave propagating in turbulent atmosphere[J]. LASER TECHNOLOGY, 2004, 28(4): 337-339.
Citation: ZHANG Yi-xin, TAO Chun-kan. Wave structure function of light wave propagating in turbulent atmosphere[J]. LASER TECHNOLOGY, 2004, 28(4): 337-339.

湍流大气中传输光波的波相位结构解析函数

基金项目: 

教育部重点科学技术资助项目(01091)

详细信息
    作者简介:

    张逸新(1956- ),男,教授,硕士,研究方向为光波在湍流大气中的传输与成像.E-mail:zyx@sytu.edu.cn

  • 中图分类号: TN012;TN929.12

Wave structure function of light wave propagating in turbulent atmosphere

  • 摘要: 在湍流大气对传输光波调制的双尺度湍涡(大尺度湍涡和小尺度湍涡)近似下,研究了用于计算描述湍流大气中传输光波相干长度变化的核心函数(互相干函数)的关键因子波结构函数(WSF),通过建立包含不同尺度湍流因子的折射率起伏谱密度函数,导出了可以用于精确理论分析平面波与球面波在湍流大气中传播时所产生的诸如到达角起伏和相干性变化等效应的波相位结构函数的精确解析式,同时给出了便于数值计算的近似误差在2%范围以内的波相位结构函数的精确渐近表达式。
    Abstract: In the approximation of the modulation process of two scale-eddies (inner-scale and outer-scale eddies) for light wave propagation in turbulent atmosphere,we study the wave structure function(WSF) used to calculate the mutual coherence function from which the transverse coherence length can readily be determined for an infinite plane wave or spherical wave.Analytical expressions are derived by means of the development of the modulation model of the power spectral density of the refractive-index fluctuations which include the factor of small-scale and large-scale sizes turbulence eddies for the wave structure function associated with the propagation of infinite plane waves and spherical waves through isotropic and homogeneous turbulence.For computational case,the approximation expressions for the structure function of infinite plane waves and spherical waves propagating through isotropic and homogeneous turbulence are also developed by simple interpolation method,whose error is less than 2%.
  • [1]

    SASIELA R J,SHELTON J D.Transverse spectral filtering and mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism [J].J O S A,1993,A10(4):646~660.

    [2]

    CHESNOKOV S S,SKIPETROV S E.Optical resolution throughatmospheric turbulence with finite outer scale [J].Opt Commun,1997,141(1):113~117.

    [3]

    LAWRENCE R S,STROHBEHN J W.A survey of clear-air propagation effects relevant to optical communications [J].Proc IEEE,1970,58(10):1523~1545.

    [4]

    LUTOMIRSKI R F,YURA H T.Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere [J].J O S A,1971,61(4):482~492.

    [5]

    ANDREWS L C,PHILLIPS R L.Laser beam propagation through random media [M].Washington:SPIE Optical Engineering Press,1998.53~55.

    [6]

    ANDREWS L C,VESTER S.Analytic expressions for the wavestructure function based on a bump spectral model for refractive index fluctuations [J].J Modern Opt,1993,40(5):591~598.

    [7]

    ANDREWS L C,AL-HALASH M A,HOPEN C Y et al.Theory of optical scintillation:Gaussian-beam wave model [J].Wave Random Media,2001,11(2):271~291.

    [8]

    ANDREWS L C,PHILLIPS R L,HOPEN C Y.Aperture averaging of optical scintillations:power fluctuations and the temporal spectrum [J].Wave Random Media,2000,10(1):53~70.

    [9] 塔塔斯基 V I.湍流大气中波的传播理论 [M].北京:科学出版社,1978.109~144.
    [10]

    VOISEKHOVICH V V.Outer scale of turbulence:comparison of different models [J].J O S A,1995,A12(6):1346~1353.

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-08-31
  • 修回日期:  2003-12-11
  • 发布日期:  2004-07-24

目录

    /

    返回文章
    返回