-
激光在液体中产生声波的特性取决于激光特性、液体特性以及光声信号的激发机制,根据液体表面层吸收的能量密度不同,激光诱导超声的机理主要有热膨胀、表面汽化和光击穿3种方式。当加载控制信号的激光脉冲与水介质相互作用时,在水面下一定距离的激光辐射区域液体吸收光能量而发生光声效应,产生方向各异的激光声脉冲,将空间光传输转换为水下声传输,通过水下一定范围内的水听器接收和系统处理解调,可完成空中到水下的信息传输与目标控制。实验证明,汽化机制的效率可达1%,光击穿的转换效率可达10%~30%,热膨胀机制的效率则低于0.01%[4-6]。
激光脉冲在水中激发声波随着激光的波长、脉冲宽度、到达水下的光束直径不同,其能量大小、密度及光声转换效率也不相同,激光在水中激发声波的机制随之改变。当激光脉冲辐射的能量密度较小时,激光声信号的激发机理是热膨胀[7-8]。对于理想情况下的均匀流体(以水为例),热膨胀机制下,激光激发声波的非齐次波动方程可表示为[9]:
$ {\nabla ^2}p - \frac{1}{{{c^2}}}\frac{{{\partial ^2}p}}{{\partial {t^2}}} = - \frac{\beta }{{{c_p}}}\frac{{\partial H\left( {x, y, z, t} \right)}}{{\partial t}} $
(1) 式中,▽2是拉普拉斯算子,p为声压,c为水下声速,β为体积热膨胀系数,cp为水的比热容,H(x, y, z, t)为单位时间单位体积液体吸收并转换成的热量密度,与激光和作用液体煤质的特性密切相关。
热膨胀机制下,假设激光脉冲加热区域是一个小球体,则得到声压脉冲的表达式为[10]:
$ \begin{array}{l} p\left( {r, t} \right) = - \frac{{\beta {E_{\rm{a}}}{c^3}}}{{{{\left( {2{\rm{ \mathsf{ π} }}} \right)}^{3/2}}{c_p}r_0^3}}\frac{1}{r}\left( {t - \frac{r}{c}} \right) \times \\ \;\;\;\;\;\;\;\exp \left\{ { - {{\left[ {\frac{c}{{{r_0}}}\left( {t - \frac{r}{c}} \right)} \right]}^2}} \right\} \end{array} $
(2) 式中,Ea为吸收的激光总能量;r0为激光加热区的半径;r表示激光脉冲作用位置到观测点的距离。该式表示的激光声脉冲波形是一个双极性脉冲,在正脉冲后面紧跟着一个负脉冲,正负脉冲幅度均为[11]:
$ {p_{\rm{m}}} = \frac{{\beta {E_{\rm{a}}}{c^2}{{\rm{e}}^{ - \frac{1}{2}}}}}{{{{\left( {2{\rm{ \mathsf{ π} }}} \right)}^{\frac{3}{2}}}{c_p}r_0^2r}} $
(3) -
针对大功率脉冲激光器驱动要求,采用语音进行实时控制,首先通过语音识别方法,将要传输的语音(汉字和字符)指令转换为代码并进行语音信号字符化,输出符合驱动激光器的编码与逻辑门电路(transistor-transistor logic, TTL)电平方式。系统所用的大功率激光器属于上升沿触发,因此采用占空比50%的TTL电平归零码实现,当编码脉冲由“0”到“1”跳变时,控制激光器发射激光,实现ASK形式的激光调制。
用单极性二进制基带信号s(t)控制激光脉冲[12],如果P(t)表示激光信号的功率,则ASK调制[13]后的单基频激光声信号可以表示为:
$ {e_{{\rm{ASK}}}}\left( t \right) = s\left( t \right)P\left( t \right) $
(4) 式中,
$ s\left( t \right) = \sum\limits_{n = - \infty }^\infty {{a_n}g\left( {t - nT} \right)} $
(5) 式中, an为第n个码元,T为码元周期;g(t)为某种脉冲波形。P(t)受控于s(t)而得到已调信号,如果基带信号s(t)的频率固定不变,则激光器的脉冲频率固定不变[14-15];如果s(t)的频率是变化的,则激光脉冲P(t)随着变化,形成可变基频ASK调制。可变基频调制激光脉冲信号的表达式如下:
$ {e_{{\rm{ASK}}}}\left( t \right) = \sum\limits_{i = - \infty }^\infty {\sum\limits_{j = - \infty }^\infty {{a_j}P\left[ {t - jT\left( {j, i} \right)} \right]} } $
(6) 基频ASK调制的激光超声传输系统属于低速数据传输,收/发端通信采用群同步异步传输,这种方式每个字符以起始位和停止位加以区分,码组间采用异步定时,而码元间采用同步定时,帧与帧之间设置帧间隙,用于接收端抽样判决。可变基频的编码设置为多帧结构,每帧设置不同基频频率,每帧长共11位,由水声传感接收的声信号形式与激光发射的ASK调制信号具有一致性。
基于语音识别控制的激光超声水下遥感研究
Research on underwater remote sensing with laser ultrasound based on speech recognition control
-
摘要: 为了减少激光致声对水下目标遥感的实时性和有效性的影响,分析了激光超声诱导与光声效应原理,采用语音识别技术实现字符化编码,探讨语音信息的基频编码和控制激光发射的码型结构。搭建了实验测试系统,利用波长为1.06μm的脉冲激光进行水下超声激励,通过对水下激光声信号采集处理,完成了实验室空中平台到水下目标的实时语音控制。结果表明,非特定人的语音指令识别与编码方法有效实现了可变基频的激光超声水下目标控制。该研究为激光声水下目标遥感应用提供了一种新的技术途径。Abstract: In order to decrease the effect of laser-induced ultrasound on real-time performance and effectiveness of underwater remote sensing, the theory of laser-induced ultrasound and photoacoustic effect was analyzed. Character encoding was achieved by speech recognition technology. Baseband encoding for speech and code structure of controlling laser emission were discussed. The system of experimental measurement was set up. Pulse laser of 1.06μm wavelength was used to induce underwater ultrasound. By collecting and processing underwater laser-induced sound signals, real-time voice control from air platform in laboratory to underwater target could be accomplished. The experimental results show that, recognition and encoding for speaker-independent voice commands can realize the control of underwater target induced by laser ultrasound with adjustable baseband frequency. The study provides a new approach for underwater remote sensing with laser-induced ultrasound.
-