高级检索

光学谐振腔的分数傅里叶变换表示

孔繁龙, 吕百达, 代明, 林菊平

孔繁龙, 吕百达, 代明, 林菊平. 光学谐振腔的分数傅里叶变换表示[J]. 激光技术, 1998, 22(1): 29-33.
引用本文: 孔繁龙, 吕百达, 代明, 林菊平. 光学谐振腔的分数傅里叶变换表示[J]. 激光技术, 1998, 22(1): 29-33.
Kong Fanlong, Lü Baida, Dai Ming, Lin Juping. Expressions of fraction Fourier transforms for multielement optical resonators[J]. LASER TECHNOLOGY, 1998, 22(1): 29-33.
Citation: Kong Fanlong, Lü Baida, Dai Ming, Lin Juping. Expressions of fraction Fourier transforms for multielement optical resonators[J]. LASER TECHNOLOGY, 1998, 22(1): 29-33.

光学谐振腔的分数傅里叶变换表示

基金项目: 

国家高技术强辐射重点实验室基金(No.H96-1)

Expressions of fraction Fourier transforms for multielement optical resonators

  • 摘要: 用矩阵方法研究了多元件光腔,特别是含透镜腔和望远镜腔的分数傅里叶变换特性,然后从广义惠更斯 菲涅耳衍射积分公式出发,推出了光腔的分数傅里叶变换的二维衍射积分表达式和分数傅里叶变换的矩阵表示式,并作了讨论.
    Abstract: The characteristics of multielement optical resonators,in particular,the resonator with an internal lens and telescopic resonator which can be represented in terms of fractional Fourier transforms(FRFTs) have been studied by means of the ABCD matrix method.Then,starting from the generalized Huygens-Fresnel diffraction integral,the two-dimensional diffraction integral of optical resonators expressed as FRFTs has been derived and the corresponding matrix formulation has been given and discussed.
  • [1]

    Namias V.J Inst Math Its Appl,1980;25:241~265

    [1]

    Ozakt as H M,Mendlovic D.J O S A,1993;A10(9):1875~1881

    [2]

    Mendlovic D,Ozaktas H M.J O S A,1993;A10(12):2522~2531

    [3]

    Bernardo L M.Opt Engng,1996;35(3):732~740

    [4]

    Ozakt as H M,Men dlovic D.J O S A,1995;A12(4):743~751

    [5] 吕百达.激光光学(第二版).成都:四川大学出版社,1992
    [6]

    Ozakt as H M,Men dlovic D.Opt Lett,1994;19(21):1678~1680

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-10-10
  • 发布日期:  1998-01-24

目录

    /

    返回文章
    返回