高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1070nm连续激光辐照三结GaAs太阳电池的实验研究

杨欢 陆健 周大勇 贾魏 李广济 周广龙 张宏超

引用本文:
Citation:

1070nm连续激光辐照三结GaAs太阳电池的实验研究

    作者简介: 杨欢(1991-), 女, 硕士研究生, 主要从事激光与物质相关作用方面的研究.
    通讯作者: 张宏超, hongchao163@163.com
  • 基金项目:

    江苏省自然科学基金资助项目 BK20130751

  • 中图分类号: TN249

Experimental study about effect of 1070nm CW laser irradiation on three-junction GaAs solar cells

    Corresponding author: ZHANG Hongchao, hongchao163@163.com
  • CLC number: TN249

  • 摘要: 为了研究真空环境下波长为1070nm连续激光辐照对三结砷化镓太阳电池输出的影响,采用实验研究的方法测量了不同功率密度激光作用下太阳电池背面温度和负载电压的实时变化。当激光功率密度为8.4W/cm2时,温度升高显著,负载电压下降趋近于零,激光作用结束,电压恢复至初始电压的53%;继续增大激光功率密度至11.7W/cm2,经2.3s后,负载电压降为零且不能恢复,电池已毁伤。结果表明,连续激光作用会引起电池温升,温度升高使负载电压下降; 作用激光功率密度较小时,电池温升幅度较小,负载电压下降幅度也较小,激光停止后,负载电压能逐渐恢复至初始状态; 作用激光功率密度较大时,温升幅度也较大,引起负载电压下降显著,即使激光停止作用,负载电压也不能恢复至初值,此时说明电池已有损伤。该实验结果可以在一定程度上为激光损伤电池机理的研究提供参考依据。
  • Figure 1.  Experimental system of a three-junction GaAs solar cell irradiated by CW laser

    a—temperature b—load voltage

    Figure 2.  Temperature and load voltage curves of a three-junction GaAs solar cell under laser irradiation

    a—laser power density of 3W/cm2 b—under different laser power densities

    Figure 3.  Temperature changing curves of a three-junction GaAs solar cell under different laser power densities

    Figure 4.  Load voltage changing curves of a three-junction GaAs solar cell at various laser power densities

  • [1]

    XIANG X B, DU W H, CHANG X L, et al. The study on high efficient GaAs/Ge solar cells[J]. Solar Energy Materials & Solar Cells, 2001, 68(1):97-103.
    [2]

    TYAGI R, SINGH M, THIRUMAVALAVAN M, et al. The influence of As and Ga prelayers on the metal-organic chemical vapor deposition of GaAs/Ge[J]. Journal of Electronic Materials, 2002, 31(3):234- 237. doi: 10.1007/s11664-002-0212-6
    [3]

    CURTIN D J, MEULENBERG A. One MeV electron irradiation of new technology silicon solar cells[J]. Energy Conversion, 1972, 12(3):81-84. doi: 10.1016/0013-7480(72)90133-7
    [4]

    CRABB R L. Photon induced degradation of electron and proton irradiated silicon solar cells[J]. IEEE Transactions on Nuclear Science, 1973, 20(6):243-249. doi: 10.1109/TNS.1973.4327402
    [5]

    ZHAN F F. Study of defects in proton irradiated GaAs/AlGaAs solar cells[D]. Shanghai: Fudan University, 2009: 14-23(in Chinese). 
    [6]

    HU J M. Radiation effects of space charged particles and methods of predicting degradation of performance in orbit for GaAs solar cell[D].Harbin: Harbin Institute of Technology, 2009: 96-111 (in Chinese).
    [7]

    LANDIS G A. Space power by ground-based laser illumination[J]. IEEE Aerospace & Electronic Systems Magazine, 1991, 6(11):3-7. 
    [8]

    YUGAMI H, KANAMORI Y, ARASHI H, et al. Field experiment of laser energy transmission and laser to electric conversion[C]//Energy Conversion Engineering Conference, 1997.Proceedings of the Intersociety. New York, USA: IEEE, 1997: 625-630.
    [9]

    ANDREEV V, KHVOSTIKOV V, KALINOVSKY V, et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming[C]// IEEE World Conference on Photovoltaic Energy Conversion 2003.New York, USA: IEEE, 2003: 761-764.
    [10]

    PENA R, ALGORA C, ANTON I. GaAs multiple photovoltaic converters with an efficiency of 45% for monochromatic illumination[C]//World Conference on Photovoltaic Energy Conversion, 2003. New York, USA: IEEE, 2003: 228-231.
    [11]

    QIU D D, WANG R, CHENG X A, et al. Wave band effect of solar cells under irradiation of CW laser[J]. Laser Technology, 2011, 35(5):632-635 (in Chinese). 
    [12]

    TIAN X Q, XIAO S, TAO Sh H, et al. Damage threshold research of monocrystalline silicon solar cells under femtosecond laser illumination[J]. Infrared and Laser Engineering, 2014, 43(3):676-680 (in Chinese). 
    [13]

    ZHU R Zh, WANG R, XU Zh J, et al. Investigation of single nanosecond laser pulse induced damage of solar cells at 532nm[J].Acta Optica Sinica, 2014, 34(s1): 116005(in Chinese).
    [14]

    ZHU R Zh, WANG R, JIANG T, et al. Research of laser irradiation effect on monocrystalline silicon solar cells and single junction GaAs solar cells[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4):479-485 (in Chinese). 
    [15]

    XUE Q, WU W H, YE Y X, et al. Property degradation of GaAs/Ge solar cells after femtosecond laser irradiation[J]. Laser & Optoelectronics Progress, 2015, 52(4):116-122 (in Chinese). 
    [16]

    XUE H Z, LI W, ZHANG H T, et al. Experimental study about laser induced damage to photovoltaic detectors in vacuum[J]. Laser Technology, 2006, 30(5):494-497 (in Chinese). 
    [17]

    SHANGHAI INSTITUTE OF SPACE POWER-SOURCES. Physical power technology[M].Beijing: Science Press, 2015:64-65 (in Chinese).
  • [1] 孙浩徐建明张宏超杨欢陆健 . 连续激光辐照三结GaAs太阳电池温度场仿真. 激光技术, 2018, 42(2): 239-244. doi: 10.7510/jgjs.issn.1001-3806.2018.02.019
    [2] 杜国军欧宗耀张晨阳王春辉李旭李重阳 . 真空环境下激光测距仪收发光轴测试方法研究. 激光技术, 2021, 45(5): 561-565. doi: 10.7510/jgjs.issn.1001-3806.2021.05.004
    [3] 陈根余钟沛新程少祥 . 大气及真空条件下玻璃激光焊接对比. 激光技术, 2022, 46(3): 362-367. doi: 10.7510/jgjs.issn.1001-3806.2022.03.010
    [4] 郭嘉伟李彤牛瑞华薛亮平李燕凌王宏元 . Cr,Tm,Ho:YAG激光器温度特性的数值分析. 激光技术, 2011, 35(6): 761-764. doi: 10.3969/j.issn.1001-3806.2011.06.010
    [5] 程建中胡云张权张增明丁泽军 . Nd:YAG连续激光辐照铝合金旋转抛物面的温度效应. 激光技术, 2009, 33(2): 141-144.
    [6] 周维军袁永华张大勇桂元珍江继军 . 1.06μm连续激光辐照TiO2/SiO2薄膜元件的损伤效应研究. 激光技术, 2006, 30(1): 76-77,81.
    [7] 吴谨 . 脉冲TEA CO2激光器温度特性的理论分析. 激光技术, 2005, 29(4): 389-391.
    [8] 朱雅琛兰戈李彤牛瑞华 . 温度对2m KTA光参变振荡激光器影响的理论分析. 激光技术, 2007, 31(5): 551-554.
    [9] 王元庆何炬马泳余寅张念梁琨 . 随机噪声对海洋布里渊激光雷达测量的影响. 激光技术, 2015, 39(1): 6-12. doi: 10.7510/jgjs.issn.1001-3806.2015.01.002
    [10] 魏学勤郑启光吴小刚辜建辉李再光 . 激光功率和材料温度的涨落特性. 激光技术, 2000, 24(5): 292-296.
    [11] 赵麒白忠臣周骅陆安江张正平刘桥 . 拉盖尔-高斯光束作用下熔石英温度及应力研究. 激光技术, 2018, 42(1): 121-126. doi: 10.7510/jgjs.issn.1001-3806.2018.01.024
    [12] 方挺欧阳强强张敬棋刘剑琴胡兴柳王彦 . 基于环绕式光纤的热风管温度解调技术. 激光技术, 2016, 40(5): 746-749. doi: 10.7510/jgjs.issn.1001-3806.2016.05.027
    [13] 贾振安乔学光李明傅海威霍汉平刘颖刚周红 . 温度对光纤光栅反射波长漂移量的影响. 激光技术, 2004, 28(3): 309-311.
    [14] 闫斌吴福全郝殿中张旭毕佳郑萌萌 . λ/4光学薄膜相位延迟器的温度特性. 激光技术, 2008, 32(2): 215-217.
    [15] 吕子尚胡劲华任丹萍赵继军 . 平顶型CLPG-CFBG级联结构中温度应力传感特性的研究. 激光技术, 2024, 48(1): 65-70. doi: 10.7510/jgjs.issn.1001-3806.2024.01.011
    [16] 欧阳强强方挺谷文平王彦胡兴柳 . 基于LCFM的分布式光纤热风管温度检测. 激光技术, 2016, 40(4): 541-544. doi: 10.7510/jgjs.issn.1001-3806.2016.04.018
    [17] 刁利王文龙孔勇韩华 . 温度对光纤Lyot消偏器输出偏振度的影响. 激光技术, 2015, 39(2): 220-223. doi: 10.7510/jgjs.issn.1001-3806.2015.02.016
    [18] 高艾琳王鑫盛荔王梦樱陶音孔勇韩华 . 温度不敏感型石英光滤波器的研究. 激光技术, 2016, 40(3): 358-362. doi: 10.7510/jgjs.issn.1001-3806.2016.03.012
    [19] 倪志波宋连科刘建苹彭捍东周文平 . 单轴晶体双折射率随温度变化的双光路测量. 激光技术, 2007, 31(4): 358-359,363.
    [20] 孔凡美李国华郝殿中宋致堂 . 云母波片偏光干涉谱随温度变化的漂移. 激光技术, 2009, 33(5): 538-540. doi: 10.3969/j.issn.1001-3806.2009.05.027
  • 加载中
图(4)
计量
  • 文章访问数:  6106
  • HTML全文浏览量:  3943
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-17
  • 录用日期:  2016-09-06
  • 刊出日期:  2017-05-25

1070nm连续激光辐照三结GaAs太阳电池的实验研究

    通讯作者: 张宏超, hongchao163@163.com
    作者简介: 杨欢(1991-), 女, 硕士研究生, 主要从事激光与物质相关作用方面的研究
  • 1. 南京理工大学 理学院, 南京 210094
  • 2. 上海空间电源研究所, 上海 200245
基金项目:  江苏省自然科学基金资助项目 BK20130751

摘要: 为了研究真空环境下波长为1070nm连续激光辐照对三结砷化镓太阳电池输出的影响,采用实验研究的方法测量了不同功率密度激光作用下太阳电池背面温度和负载电压的实时变化。当激光功率密度为8.4W/cm2时,温度升高显著,负载电压下降趋近于零,激光作用结束,电压恢复至初始电压的53%;继续增大激光功率密度至11.7W/cm2,经2.3s后,负载电压降为零且不能恢复,电池已毁伤。结果表明,连续激光作用会引起电池温升,温度升高使负载电压下降; 作用激光功率密度较小时,电池温升幅度较小,负载电压下降幅度也较小,激光停止后,负载电压能逐渐恢复至初始状态; 作用激光功率密度较大时,温升幅度也较大,引起负载电压下降显著,即使激光停止作用,负载电压也不能恢复至初值,此时说明电池已有损伤。该实验结果可以在一定程度上为激光损伤电池机理的研究提供参考依据。

English Abstract

    • 砷化镓太阳电池因其光吸收系数大、光电转换效率高、抗辐射性能强、耐高温等优点,成为21世纪卫星航天器的主电源[1-2]。卫星航天器处于太空中,其电池阵列易受到空间粒子的辐照,自20世纪60年代开始,国外学者研究了不同能量的电子、质子辐照对不同类型的太阳电池输出性能下降的影响[3-4]。国内学者也开展了这方面的研究,探讨了空间粒子辐照太阳电池致其损伤的机理,研究了质子辐照对太阳电池电学特性的影响以及质子电子辐照对在轨太阳电池性能退化方面的作用[5-6]。而公开报道激光辐照电池的研究相对较少,国外研究侧重于激光无线能量传输[7-8]和完善电池结构提高电池效率[9-10]:LANDIS等人基于地面激光为空间电源传输能量;YUGAMI等人用不同激光系统(如CO2,YAG等)在地面距500m处进行了激光能量传输试验,测试了在不同气象环境下长时间内能量传输效率[8]。国内侧重于太阳电池毁伤机理的研究,大多数也是针对激光对硅太阳电池的研究或脉冲激光对单结砷化镓太阳电池的损伤研究[11-16]。对于单结砷化镓太阳电池的研究是从电流-电压(I-V),功率-电压(P-V)曲线以及损伤形貌这3个方面来展开的,所用到的激光为飞秒和纳秒的脉冲激光,波长为520nm,1064nm,800nm。而真空环境连续激光对三结砷化镓太阳电池的研究很少,从温度和电压方面分析激光对电池的影响的研究几乎没有。

      本文中采用波长为1070nm、输出功率为200W的光纤连续激光器在真空环境下对三结砷化镓太阳电池进行辐照。利用点温仪和示波器测量了激光辐照过程中太阳电池背面温度以及所接负载两端电压的变化情况,通过分析温度和负载电压的变化来研究激光辐照对电池光电输出的影响规律。

    • 实验系统包括连续光纤激光器、扩束装置、真空装置、测量设备,实验装置如图 1所示。光纤连续激光器波长为1070nm,单模输出,最大输出功率200W,输出功率连续可调。扩束装置由凸透镜L1和L2及可调光阑组成,凸透镜L1的直径为25mm,焦距f=40mm;凸透镜L2的直径为50mm,焦距f=150mm;可调光阑调节范围2mm~50mm,通过调节凸透镜L1和L2之间的距离,可以实现到达太阳电池样品表面的光斑大小的连续调节。通过调节光阑对光束进行限制,使光斑大小略大于样品尺寸。真空装置由机械泵、分子泵和真空腔组成,真空度最低可达10-4Pa。真空装置包含真空电极,可将点温仪和太阳电池的电极引出腔外,这样克服了点温仪隔着观察窗对样品温度进行测量的问题。

      Figure 1.  Experimental system of a three-junction GaAs solar cell irradiated by CW laser

      实验中用到的样品为三结GaInP2/GaAs/Ge太阳电池。三结砷化镓太阳电池是由顶电池、中电池、底电池组成,按禁带宽度Eg从大到小的顺序迭合而成,对300nm~1800nm的光进行吸收,通过隧穿结串联,电压叠加,电流取最小值。样品尺寸为30mm×40mm。

      作用于太阳电池样品表面激光功率的标定采用能量计(美国光谱物理公司的Model 1918-R Power Meter),通过测量得到穿过光学窗口达到样品表面的激光功率与激光器控制电压之间的关系。采用点温仪测量电池背面温度,其量程为0℃~500℃,响应时间300ms,利用智能变送仪将点温仪的实时数据转换成电压,实时测量电池背面温度。利用卤钨灯提供电池正常工作的背景光,可变电阻箱作为太阳电池的负载,可变电阻箱的电阻调节至最佳负载,使太阳电池的输出功率最大。

    • 图 2是作用激光辐照太阳电池的温度和负载电压变化曲线图。其中负载电压做了归一化处理,温度的单位为K,激光辐照时间为20s。图 2a为温度变化曲线,图 2b为负载电压变化曲线。如图 2所示,大约5s,激光开始作用,随着激光的连续输出,太阳电池温度逐渐上升,负载两端电压下降。温度升高的幅度和负载电压下降的幅度与作用激光功率密度有关。图 2a中激光功率密度为2W/cm2时最高温升为16K;激光功率密度为5W/cm2时最高温升为50K。图 2b中激光功率密度为2W/cm2时, 负载电压最低下降至初始值的71%;激光功率密度为5W/cm2时, 负载电压最低下降至初始值的10%。

      Figure 2.  Temperature and load voltage curves of a three-junction GaAs solar cell under laser irradiation

      在连续激光对三结砷化镓太阳电池作用过程中,温度对电池的影响起到重要作用。这是因为顶电池和中电池对1070nm激光无光电效应,只能将吸收的激光能量转换成热能,进而引起温度的上升,虽然底电池对1070nm激光存在光电效应,但激光输出功率已远超其饱和电流,多余的能量最终也转换成了热能,引起电池的温升。从图 2中可以看出,太阳电池的负载电压在激光加载的初期有短暂的上升,作者认为提供背景光的卤钨灯强度还不足以使底电池的输出电流达到饱和,所以在1070nm激光加载上时,产生载流子其输出得到了短暂的提升。但随着温度的迅速上升,电池效率下降,从而引起了电池输出电压的下降。随着电池吸收激光能量越多引起温度升高的幅度越大,温度的升高引起电池内部串联电阻和并联电阻的变化,从而导致负载两端电压的下降,这与温度对电池的影响相符,即输出电压会随着温度的升高而减小[17]

      图 3a是激光功率密度为3W/cm2、辐照时间为20s时,电池背面温度随时间的变化曲线。从图 3a可以看出,当激光辐照电池时,电池的温度急剧上升,并达到温度的最高点,激光停止作用时,温度开始下降。在温度下降的初始阶段电池温度下降比较迅速,但随后温度下降速度越来越缓慢,逐渐趋于一个比较稳定的温度,在100s时仍高于初始温度。电池温度要下降至初始温度需要一个比较长的时间,这是由于在真空环境中,缺乏空气的对流,电池的热扩散主要是通过红外辐射的方式。根据斯忒藩-玻耳兹曼定律可知,通过红外辐射出去的能量与温度的4次方成正比。停止激光作用最初电池的温度比较高,因而辐射的功率也高,温度下降也快;随着电池的温度下降,其红外辐射减弱,因而辐射功率也迅速下降,温度的下降也趋于缓慢。

      Figure 3.  Temperature changing curves of a three-junction GaAs solar cell under different laser power densities

      图 3b可以看出,在作用时间相同的条件下(辐照时间20s),激光功率密度越大,引起电池温升幅度越大,能达到的最高温度越高。这主要是因为激光功率密度越大,电池吸收的激光能量越多,转换成的热能越多,相应地引起温度升高幅度越大。从图中可以看出,不同作用激光能量引起的温升趋势都类似,这主要是因为红外辐射在其中起到了重要的作用。

      图 4中当激光功率密度为2.0W/cm2、辐照时间为20s时,负载电压最低下降至初始值的71%,激光作用结束后,电压最终能够恢复至初始值的93%;当激光功率密度为5.0W/cm2、辐照时间为20s时,负载电压最低下降至初始值的10%,激光作用结束,电压最终能够恢复至初始值的77%;当激光功率密度为8.4W/cm2、辐照时间为12s时,负载电压最低下降趋近于零,但激光作用结束后,电压仍然能够恢复至初始值的53%;当激光功率密度为11.7W/cm2、辐照时间为10s时,大约2.3s处时,负载电压下降至零,且激光作用结束后,负载电压不能恢复,说明太阳电池已毁伤。

      Figure 4.  Load voltage changing curves of a three-junction GaAs solar cell at various laser power densities

      图 4可以看出,当作用激光功率密度较小时,虽然能够引起太阳电池输出电压的下降,但是当激光作用结束时,仍然能够恢复至接近初始状态,说明激光并没有对太阳电池造成明显的毁伤;随着作用激光功率密度的提高,太阳电池负载电压下降接近零,当激光作用结束,也能够恢复至初始值的53%,这其中背后的机理值得后续工作的进一步研究;当作用激光功率密度进一步提高至11.7W/cm2时,即使激光作用停止,也不能恢复,说明电池已彻底毁伤。

      基于只有能量高于半导体带隙宽度的光子才能激发产生光生载流子的原理,三结砷化镓太阳电池是3种对太阳光波吸收能力不同的半导体材料叠在一起构成3个P-N结的太阳电池,GaInP2, GaAs, Ge的带隙宽度分别为1.85eV, 1.42eV, 0.67eV,实验中所用的激光波长为1070nm,其能量低于GaInP2和GaAs半导体带隙宽度,到达顶电池和中电池的光子无法将价带电子激发到导带,不能对光生电流产生贡献,只能将激光的能量转换为热量并且有累积效应;透射到底电池的激光其能量高于Ge半导体带隙宽度将价带电子激发到导带,把与带隙宽度相当的能量传给光生载流子,多余的能量则将以声子的形式传给晶格,变成热能。故波长为1070nm的激光对三结砷化镓太阳电池的作用以热效应为主,当激光功率密度达到一定的程度时,利用热效应对太阳电池造成损伤,破坏电池内部P-N结使电池光电转换能力丧失。激光的作用引起电池的温升,温度的升高导致负载电压的下降。1W/cm2引起的最高温升为5K,此时对电池几乎无影响;5W/cm2引起的最高温升为50K,此时负载电压最低下降到初始值的10%。作用激光功率密度较小时,辐照电池使其温度升高,电池的性能随着温度的升高发生暂时性降低,激光停止辐照之后,电池的性能会随着温度的降低而逐渐恢复,电池并不会明显毁伤;作用激光功率密度达到一定程度,电池吸收激光能量引起温度显著升高,电池性能发生一定程度地降低,继续增加激光能量,电池性能大幅度降低,电池被损伤。在辐照时间相同的条件下,激光功率密度越大,产生的热量越多,温升越明显,电压下降幅度越大,对电池的损伤越严重。

    • 在真空环境下,通过实验得到的温度和负载电压的变化趋势,研究了1070nm连续激光对三结砷化镓太阳电池的影响。实验表明,当激光功率密度较小时,虽然电池负载电压在作用过程中有所下降,但激光结束后,仍能够恢复至接近初始状态;当激光功率密度较大时,引起的温度升高幅度变大,负载电压下降幅度增大,会造成电池的损伤。实验研究发现,作用激光功率密度在5W/cm2时,电池负载电压已不能恢复至初值,激光功率密度增至11.7W/cm2,激光作用大约2.3s后,负载电压降为零且激光作用停止后电压也不能恢复,表明电池已彻底损伤。该工作可以为连续激光对三结砷化镓太阳电池的损伤机理研究提供一定的参考依据。

参考文献 (17)

目录

    /

    返回文章
    返回