高级检索

1070nm连续激光辐照三结GaAs太阳电池的实验研究

杨欢, 陆健, 周大勇, 贾魏, 李广济, 周广龙, 张宏超

杨欢, 陆健, 周大勇, 贾魏, 李广济, 周广龙, 张宏超. 1070nm连续激光辐照三结GaAs太阳电池的实验研究[J]. 激光技术, 2017, 41(3): 318-321. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.003
引用本文: 杨欢, 陆健, 周大勇, 贾魏, 李广济, 周广龙, 张宏超. 1070nm连续激光辐照三结GaAs太阳电池的实验研究[J]. 激光技术, 2017, 41(3): 318-321. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.003
YANG Huan, LU Jian, ZHOU Dayong, JIA Wei, LI Guangji, ZHOU Guanglong, ZHANG Hongchao. Experimental study about effect of 1070nm CW laser irradiation on three-junction GaAs solar cells[J]. LASER TECHNOLOGY, 2017, 41(3): 318-321. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.003
Citation: YANG Huan, LU Jian, ZHOU Dayong, JIA Wei, LI Guangji, ZHOU Guanglong, ZHANG Hongchao. Experimental study about effect of 1070nm CW laser irradiation on three-junction GaAs solar cells[J]. LASER TECHNOLOGY, 2017, 41(3): 318-321. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.003

1070nm连续激光辐照三结GaAs太阳电池的实验研究

基金项目: 

江苏省自然科学基金资助项目 BK20130751

详细信息
    作者简介:

    杨欢(1991-), 女, 硕士研究生, 主要从事激光与物质相关作用方面的研究

    通讯作者:

    张宏超, E-mail:hongchao163@163.com

  • 中图分类号: TN249

Experimental study about effect of 1070nm CW laser irradiation on three-junction GaAs solar cells

  • 摘要: 为了研究真空环境下波长为1070nm连续激光辐照对三结砷化镓太阳电池输出的影响,采用实验研究的方法测量了不同功率密度激光作用下太阳电池背面温度和负载电压的实时变化。当激光功率密度为8.4W/cm2时,温度升高显著,负载电压下降趋近于零,激光作用结束,电压恢复至初始电压的53%;继续增大激光功率密度至11.7W/cm2,经2.3s后,负载电压降为零且不能恢复,电池已毁伤。结果表明,连续激光作用会引起电池温升,温度升高使负载电压下降; 作用激光功率密度较小时,电池温升幅度较小,负载电压下降幅度也较小,激光停止后,负载电压能逐渐恢复至初始状态; 作用激光功率密度较大时,温升幅度也较大,引起负载电压下降显著,即使激光停止作用,负载电压也不能恢复至初值,此时说明电池已有损伤。该实验结果可以在一定程度上为激光损伤电池机理的研究提供参考依据。
    Abstract: In order to study effect of 1070nm continuous wave (CW) laser irradiation on three-junction GaAs solar cells, rear surface temperature and load voltage of a solar cell under different power densities were measured. Under 8.4W/cm2 laser irradiation, the temperature increased obviously and load voltage decreased nearly to zero. The load voltage only recovered to 53% of the initial value after irradiation. With the increasing of power density to 11.7W/cm2, the load voltage decreased to zero after 2.3s. Furthermore, the cell was damaged and can't be recovered. The results show that the temperature of a solar cell rises significantly and the load voltage deceases when irradiated by CW laser. When laser power density is small, the rise of cell temperature is small and the drop of load voltage is also small. The load voltage can be restored to the initial state with the stop of laser irradiation. When laser power density is large, the rise of cell temperature is large and load voltage decreases significantly. Even with the stop of laser, the load voltage can not be restored to the initial value and the cell is damaged. The experiment results can provide reference basis for the research of damage mechanism of solar cells under laser irradiation.
  • Figure  1.   Experimental system of a three-junction GaAs solar cell irradiated by CW laser

    Figure  2.   Temperature and load voltage curves of a three-junction GaAs solar cell under laser irradiation

    Figure  3.   Temperature changing curves of a three-junction GaAs solar cell under different laser power densities

    Figure  4.   Load voltage changing curves of a three-junction GaAs solar cell at various laser power densities

  • [1]

    XIANG X B, DU W H, CHANG X L, et al. The study on high efficient GaAs/Ge solar cells[J]. Solar Energy Materials & Solar Cells, 2001, 68(1):97-103.

    [2]

    TYAGI R, SINGH M, THIRUMAVALAVAN M, et al. The influence of As and Ga prelayers on the metal-organic chemical vapor deposition of GaAs/Ge[J]. Journal of Electronic Materials, 2002, 31(3):234- 237. DOI: 10.1007/s11664-002-0212-6

    [3]

    CURTIN D J, MEULENBERG A. One MeV electron irradiation of new technology silicon solar cells[J]. Energy Conversion, 1972, 12(3):81-84. DOI: 10.1016/0013-7480(72)90133-7

    [4]

    CRABB R L. Photon induced degradation of electron and proton irradiated silicon solar cells[J]. IEEE Transactions on Nuclear Science, 1973, 20(6):243-249. DOI: 10.1109/TNS.1973.4327402

    [5]

    ZHAN F F. Study of defects in proton irradiated GaAs/AlGaAs solar cells[D]. Shanghai: Fudan University, 2009: 14-23(in Chinese). https://www.sciencedirect.com/science/article/pii/S0169433209007211

    [6]

    HU J M. Radiation effects of space charged particles and methods of predicting degradation of performance in orbit for GaAs solar cell[D].Harbin: Harbin Institute of Technology, 2009: 96-111 (in Chinese).

    [7]

    LANDIS G A. Space power by ground-based laser illumination[J]. IEEE Aerospace & Electronic Systems Magazine, 1991, 6(11):3-7. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=103777

    [8]

    YUGAMI H, KANAMORI Y, ARASHI H, et al. Field experiment of laser energy transmission and laser to electric conversion[C]//Energy Conversion Engineering Conference, 1997.Proceedings of the Intersociety. New York, USA: IEEE, 1997: 625-630.

    [9]

    ANDREEV V, KHVOSTIKOV V, KALINOVSKY V, et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming[C]// IEEE World Conference on Photovoltaic Energy Conversion 2003.New York, USA: IEEE, 2003: 761-764.

    [10]

    PENA R, ALGORA C, ANTON I. GaAs multiple photovoltaic converters with an efficiency of 45% for monochromatic illumination[C]//World Conference on Photovoltaic Energy Conversion, 2003. New York, USA: IEEE, 2003: 228-231.

    [11]

    QIU D D, WANG R, CHENG X A, et al. Wave band effect of solar cells under irradiation of CW laser[J]. Laser Technology, 2011, 35(5):632-635 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201105016

    [12]

    TIAN X Q, XIAO S, TAO Sh H, et al. Damage threshold research of monocrystalline silicon solar cells under femtosecond laser illumination[J]. Infrared and Laser Engineering, 2014, 43(3):676-680 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201403002

    [13]

    ZHU R Zh, WANG R, XU Zh J, et al. Investigation of single nanosecond laser pulse induced damage of solar cells at 532nm[J].Acta Optica Sinica, 2014, 34(s1): 116005(in Chinese).

    [14]

    ZHU R Zh, WANG R, JIANG T, et al. Research of laser irradiation effect on monocrystalline silicon solar cells and single junction GaAs solar cells[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4):479-485 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyhmb201504017

    [15]

    XUE Q, WU W H, YE Y X, et al. Property degradation of GaAs/Ge solar cells after femtosecond laser irradiation[J]. Laser & Optoelectronics Progress, 2015, 52(4):116-122 (in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201504016.htm

    [16]

    XUE H Z, LI W, ZHANG H T, et al. Experimental study about laser induced damage to photovoltaic detectors in vacuum[J]. Laser Technology, 2006, 30(5):494-497 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200605008

    [17]

    SHANGHAI INSTITUTE OF SPACE POWER-SOURCES. Physical power technology[M].Beijing: Science Press, 2015:64-65 (in Chinese).

  • 期刊类型引用(3)

    1. 张科星. 基于深度学习理论的激光图像融合研究. 激光杂志. 2021(04): 121-125 . 百度学术
    2. 杨敏,唐思源,白金牛. 基于光流场模型的医学图像弹性配准. 激光杂志. 2020(07): 104-108 . 百度学术
    3. 曾志宏,张凌,余少勇. 基于区域特征的长波红外偏振图像融合. 激光杂志. 2020(12): 65-69 . 百度学术

    其他类型引用(0)

图(4)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  19
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-08-16
  • 修回日期:  2016-09-05
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回