Loading [MathJax]/jax/output/SVG/jax.js
高级检索

聚合物光纤通信及传感研究进展

刘宇轩, 谢建达

刘宇轩, 谢建达. 聚合物光纤通信及传感研究进展[J]. 激光技术, 2024, 48(4): 505-520. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.008
引用本文: 刘宇轩, 谢建达. 聚合物光纤通信及传感研究进展[J]. 激光技术, 2024, 48(4): 505-520. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.008
LIU Yuxuan, XIE Jianda. Progress in research of polymer optical fiber communication and sensing[J]. LASER TECHNOLOGY, 2024, 48(4): 505-520. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.008
Citation: LIU Yuxuan, XIE Jianda. Progress in research of polymer optical fiber communication and sensing[J]. LASER TECHNOLOGY, 2024, 48(4): 505-520. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.008

聚合物光纤通信及传感研究进展

基金项目: 

福建省中青年教师教育科研项目(科技类) JAT200483

详细信息
    通讯作者:

    谢建达, xiejianda@xmut.edu.cn

  • 中图分类号: O439;TN253

Progress in research of polymer optical fiber communication and sensing

  • 摘要: 光纤技术的诞生使得信息传输速度显著提高,目前已经进入了光纤技术应用的全新阶段。在这个阶段中,聚合物光纤作为一种新型光纤备受关注,由于其材料的性质,比硅光纤更加柔软、轻便以及成本更低廉;同时,聚合物光纤的成型和处理方式也比硅光纤更加灵活,可以根据不同的需求和应用进行定制。随着制造和性能的不断改进,聚合物光纤在传输和传感领域都显示出了强大的潜力和多种应用的可能性,如光纤通信、物理研究、健康监测、生物医疗和环境监测等。介绍了聚合物光纤在上述领域的应用,总结了聚合物光纤在光纤通信和传感应用中的前景,最后指出了未来的研究方向。
    Abstract: The birth of fiber optic technology makes the information transmission speed greatly improved, now we have entered a brand new stage of fiber optic technology application. In this stage, polymer optical fiber as a new type of optical fiber has attracted much attention. Due to the nature of its material, it is softer, lighter and cheaper than silicon fiber. At the same time, polymer fiber is more flexible than silicon fiber in terms of forming and handling, and can be customized for different needs and applications. With continuous improvements in manufacturing and properties, polymer optical fibers show strong potential and multiple applications in both transmission and sensing, such as fiber optic communications, physics research, health monitoring, biomedical and environmental monitoring. The applications of polymer optical fibers in these fields are presented in turn, the prospects of polymer optical fibers in fiber optic communication and sensing applications are summarized, and finally, future research directions are indicated.
  • 激光辐照气流环境中典型金属材料的热力学响应是激光加工等应用领域关心的热点和关键问题[1-4],铝合金是工业领域常用材料,研究获得其热响应和熔穿特性,对激光切割、打孔等实际应用具有重要指导意义和价值[5-7]

    在激光辐照材料过程中,材料响应与激光体制参数、材料热物理性质、激光与材料耦合特性、辐照区域内材料所处气流等环境息息相关[8-11]。当发生激光烧蚀材料相变后,金属的相变熔融物会阻碍激光向金属材料内部辐照,将熔融物从熔池中排出需要消耗部分激光能量,导致激光烧蚀清除效率低[12-14]。国外从20世纪70年代已开始从理论上研究切向气流对激光作用下材料清除时间的影响,近年来,国内外在实验和理论方面已有较多气流速度、气流组分等作用金属、复合材料靶的研究,结果表明,当切向气流作用于靶表面时,由于对流换热和切向气流对熔蚀物的清除作用,材料热响应和清除特性与自然对流环境下相比存在显著差异[8, 12, 15-16]。甚至当激光加热使靶材发生软化时,气流引起的前后表面压力差导致的剪切应力可在远低于熔点的情况下实现材料清除[17-18]。虽然理论、实验已有较多关于气流环境下激光辐照研究,但仍以定性的结果和规律认识为主。应用中如何高效、定量地获得材料清除效果,仍需要发展满足物理需求的数值模拟方法。

    本文作者构建了考虑主要物理机制的气流和激光联合作用材料热学响应物理模型,同时为量化比较对流换热和清除熔蚀物二者在激光辐照材料中的作用,以铝合金为例,计算获得侧向气流条件不同激光功率密度下铝合金板的烧蚀清除规律,相关工作对铝合金板加工参数选择具有一定参考价值。

    气流环境下激光辐照材料是一个复杂的多物理场强耦合物理过程,存在气流换热、热-力耦合等多种物理效应,激光加载的能量、气流流动引起对流换热导致的能量损失以及材料烧蚀导致能量交换将共同决定靶材内部温度的分布,需要建立相应的物理模型[19-21]。对于激光加载和能量耦合过程,鉴于不透明金属材料对激光吸收深度小,通常约10 nm量级,计算中激光加载能量作为面热源处理,在材料区域内,热传导方程的数学描述为:

    ρcTt=(κT)+Qr (1)

    式中:ρ为壳材料密度;c为壳材料比热容;T为材料温度;t为时间;为矢量微分算符;κ为材料导热系数;Qr为材料相变和氧化反应热源项。

    激光加载区域边界条件为:

    (κTz)+qc+qr=q1 (2)

    式中:z为靶厚度;qc为对流换热热流;qr为辐射换热热流;ql为材料表面吸收的激光热流。

    加载对流边界换热热流可表示为:

    qc=hc(TT0) (3)

    式中:hc对流换热系数;T0为表面气流温度。

    辐射换热热流为:

    qr=σε(T4T04) (4)

    式中:σ为Stefan-Boltzmann常数;ε为表面发射率。

    假定靶温度1000 K,辐射换热热流功率密度约1 W/cm2量级,相对于对流和加载激光功率密度较小,计算中可忽略。激光辐照下金属表面高温物质脱落,激光束直接辐照下一层材料,使得辐照热效应增强。为了模拟这种熔蚀效应,将受激光辐照的最外层未剥离表面定义为熔迹面。热软化物质剥离采用温度准则判据,即达到某高温状态热软化材料被气流剥离[19, 21]。采用“单元生死法”计算边界的移动和热传导,当某一离散单元的温度超过熔化温度或气化温度,定义该单元不再参与计算,对应加载边界施加到新的单元上,整个过程不可逆。

    通过计算结果与实验结果比较校验计算模型,模型校验用算例参数和数据编号见表 1。表中自然对流下实验结果case 1和case 2参数引自参考文献[16]。自然对流下激光辐照实验靶板温升模拟结果见图 1a,亚声速气流条件下实验的模拟结果见图 1b。图中,R为到靶板中心点距离。模拟计算的case 1和shot 1靶背面不同位置温升与实验结果符合较好,计算结果显示靶板未发生熔穿,靶板升温和辐照结束后自然冷却过程均与实验结果一致;实验测得的case 2和shot 2靶板熔穿时间Δt分别为6.5 s和6.0 s,采用计算铝板靶背面中心点温升获得靶板熔穿时间,模型计算的case 2和shot 2的熔穿时间分别为7.0 s和5.6 s,计算结果与实验结基本一致。通过温升曲线和熔穿时间比较,新建模型可较好地模拟激光辐照靶板的温度和熔穿过程。

    表  1  模型校验用算例参数
    Table  1.  Parameters of simulation case for model verification
    number power density/(W·cm-2) irradiation time/s material material dimension/mm flow velocity/(m·s-1)
    case 1 1190 10 LY12 30×2 0
    case 2 1190 10 LY12 30×1 0
    shot 1 800 10 LY12 100×100×3 120
    shot 2 1400 10 LY12 100×100×3 120
    下载: 导出CSV 
    | 显示表格
    图 1 模型校核计算结果
    图  1  模型校核计算结果
    Figure  1.  Calculation results of model verification

    为充分分析气流环境对清除或气化规律的影响,分别开展了气流条件和无气流条件下2种典型工况的计算分析:有气流环境采用切向速率240 m/s、静温20 ℃的无穷远处均匀空气来流,根据经验公式对流换热系数取0.06 W/(cm2·K),以熔化温度作为穿孔(或单元删除)判据;无气流条件下以气化温度作为穿孔(或单元删除)判据计算,利用新建数值计算模型对激光辐照薄板厚度d =3 mm和厚板d =7 mm工况分别开展了熔穿规律数值模拟研究。计算中激光参数采用峰值功率密度I0分别取500 W/cm2、1000 W/cm2、1500 W/cm2、2000 W/cm2,光斑采用高斯分布;靶板采用LY12铝,几何模型厚度分别为3 mm和7 mm圆板,激光辐照在中心区域。

    气流条件下厚度为3 mm靶板温度演化见图 2。加载激光峰值功率密度为500 W/cm2时,背面温度沿径向方向逐渐减低,背面靶板最高温度450 ℃,尚未达到铝的融化温度;当激光停止后,靶板在气体对流换热作用下,温度逐渐降低。计算获得不同峰值功率密度激光辐照靶板背面中心点的温度演化见图 2b。随着激光功率密度提高,靶温升率逐渐提高,其中在峰值功率密度1000 W/cm2时,辐照6.2 s后靶板熔穿;在峰值功率密度1500 W/cm2时,辐照3.4 s后靶板熔穿;在峰值功率密度2000 W/cm2时,辐照2.4 s后靶板熔穿。

    图 2 激光辐照3 mm厚度靶板背面的温度
    图  2  激光辐照3 mm厚度靶板背面的温度
    Figure  2.  Temperature at back of 3 mm target plate after laser irradiation

    气流条件下厚度为7 mm靶板温度演化见图 3。当激光峰值功率密度为2000 W/cm2时,靶板背面不同位置温度变化过程见图 3a,由于结构较厚,时间较长时,在距中心15 cm远位置也出现温升。当激光停止后,靶板在气体对流换热作用下,温度逐渐降低。激光功率密度为2000 W/cm2时板熔穿时间6.8 s。计算获得不同峰值功率密度激光辐照靶板背面中心点的温度演化见图 3b。随着激光功率密度提高,靶温升率逐渐提高,只有在峰值功率密度为2000 W/cm2时,辐照6.8 s后靶板熔穿;由于靶板较厚,在辐照10 s情况下其它较小加载功率密度均未造成熔穿。

    图 3 激光辐照7 mm厚度靶板背面的温度
    图  3  激光辐照7 mm厚度靶板背面的温度
    Figure  3.  Temperature at back of 7 mm target plate after laser irradiation

    在无气流条件、无重力等移除熔蚀物的作用情况下,计算获得的不同功率密度时3 mm厚度铝板背面中心点温度见图 4a,激光辐照的能量全部用于加热靶板,无质量迁移力,此时只有在铝板温度达到铝的气化温度后才能穿孔,计算结果显示,即使在功率密度为2000 W/cm2的高斯光束、辐照时间10 s,仍无法烧穿3 mm厚铝板;同样加载激光参数、靶参数情况,当施加质量迁移力,假定熔化后即将熔化层移除,此时3 mm厚度铝板背面中心点温升见图 4b,在功率密度1000 W/cm2~2000 W/cm2情况均出现熔穿。在不考虑气动加热等额外热源情况下,此时计算的熔穿时间即为该工况条件下的最快熔穿时间。

    图 4 熔蚀物清除力对靶背面温升的影响
    图  4  熔蚀物清除力对靶背面温升的影响
    Figure  4.  Effect of molten material removal force on temperture at back of target plate

    计算的气流和理想清除力情况下熔穿时间、功率密度参数的关系见图 5。图中,Δt为熔穿时间,A为材料表面吸收率。随着功率密度增加,熔穿时间急剧减小。与参考文献[17]中热平衡积分方法计算获得的气化烧蚀穿透模型结果比较,穿孔时间变化规律符合较好;但定量上由于二者物理模型存在差异,无法直接比较。本文中计算模型中光斑采用高斯分布模型,在考虑了侧向气流对流换热影响,与参考文献[17]中假定均匀光场定态气化假设不同,所以气流工况在低功率密度加载或厚板情况下与文献近似计算结果存在一定偏离;对于薄板、大功率密度加载情况下,对流换热作用时间短,与热平衡积分方法假设的条件更接近,并且本文中算例采用的光斑尺寸较大,在辐照区域内接近1维热扩散,所以参考文献中的理论与数值计算结果更接近。从穿孔时间可以看出,在功率密度较高区域各工况之间的差异小,功率密度较低区域各条件之间差异较大。分析认为,计算中声速固定时,对流换热系数则采用固定值,随着功率密度增加,对流换热的影响比例逐渐较降低。所以,在激光功率密度较小(500 W/cm2附近)时,近似计算或评估中建议不要忽略气流对流换热的影响;在激光功率密度较高(1500 W/cm2以上)时,气流对流换热的影响较小。

    图 5 熔穿时间与功率密度的关系
    图  5  熔穿时间与功率密度的关系
    Figure  5.  Relationship between melted perforation time and laser power density

    构建了考虑热传导、对流换热、熔化烧蚀等主要物理机制的气流和激光联合作用材料热学响应物理模型,获得气流环境下不同激光功率密度时铝合金板的热响应和烧蚀熔穿规律。高斯分布光束的出光峰值功率密度为1000 W/cm2、1500 W/cm2和2000 W/cm2时,3 mm厚铝板熔穿时间分别为6.2 s、3.4 s和2.4 s。随着功率密度增加,熔穿时间急剧减小,并且计算结果与参考文献中热平衡积分方法气化烧蚀穿透模型结果规律一致。与文献中假定均匀光场定态气化假设不同,本文中计算模型考虑了侧向气流对流换热影响,可实时更新温度扩散,数值模型与实际物理过程更接近。从穿孔时间可以看出,在功率密度较高区域各工况之间的差异小,功率密度较低区域各条件之间差异较大,在激光功率密度较小(500 W/cm2附近)时,近似计算或评估中建议不要忽略气流对流换热的影响;在激光功率密度较高(1500 W/cm2以上)时,气流对流换热的影响较小。由于气流环境下激光与金属相互作用包含复杂的传热、流动、化学反应以及金属材料的软化、脱落等力学过程,其综合作用机制还有待进一步研究。

  • 图  1   1 mm PMMA SI POF的典型光谱衰减[13]

    Figure  1.   Typical spectral attenuation of a 1 mm PMMA SI POF[13]

    图  2   PMMA和CYTOP GI POFs的衰减光谱比较[19]

    Figure  2.   Comparison of attenuation spectra between PMMA and CYTOP GI POFs[19]

    图  3   a—轮状结构悬浮梯度折射率多孔芯光纤[51] b—方晶格多孔芯微结构光纤[57] c—传统六方晶格包层的多孔芯微结构光纤[58] d—六角多孔包层菱形多孔芯微结构光纤[59] e—椭圆七水平开槽气孔芯微结构光纤[62] f—基于圆形的星形微结构光纤[63]  g—矩形气孔悬槽芯微结构光纤[64] h—六边型圆形气孔包层的可变长度矩形槽悬槽芯微结构光纤[65] i—八角型四方形包层开槽芯微结构光纤[66] j—六边型圆形气孔包层的多孔芯微结构光纤[70] k—带有4管嵌套半椭圆包层管的微结构光纤[71]

    Figure  3.   a—wheel-like structure suspended gradient refractive index porous core fiber[51] b—square lattice porous core microstructured fiber[57] c—conventional hexagonal lattice cladding porous core microstructured fiber[58] d—hexagonal porous cladding rhombic porous core microstructured fiber[59] e—elliptical seven-level horizontally slotted porous core microstructured fiber[62] f—circular-based star microstructured fiber[63] g—rectangular porous overhanging slot core microstructured fiber[64] h—hexagonal circular porous cladding variable length rectangular slot overhanging slot core microstructured fiber[65] i—octagonal tetragonal cladding slotted core microstructured fiber[66] j—porous core microstructured fiber with hexagonal circular aperture cladding[70] k—microstructured fiber with 4-tube nested semi-elliptical cladding tubes[71]

    图  4   a—脉搏监测传感器的配置和监测结果[77] b—传感器于胸部定位和心率呼吸率仿真结果[82] c—传感器在手肘关节处的位置和关节角度测量结果[92] d—POF传感器在肘关节处的定位和对弯曲角度的响应曲线[93]

    Figure  4.   a—configuration of the pulse monitoring sensor and monitoring results[77] b—sensor localization on the chest and heart rate simulation results[82] c—sensor position on the elbow joint and joint angle measurements[92] d—position of the POF sensor on the elbow joint and response curves to bending angles[93]

    图  5   a—SPR传感原理示意图 b—透射光谱

    Figure  5.   a—schematic diagram of the SPR sensing principle b—transmission spectra

    图  6   a—带有溅射金膜POF的平面[144] b—带有溅射金膜POF的截面示意图[144] c—传感原理示意图[145] d—湿度传感器制造和3-D示意图[147]

    Figure  6.   a—schematic of planar with sputtered gold film POF[144] b—cross section with sputtered gold film POF[144] c—schematic of the sensing principle[145] d—schematic of the humidity sensor fabrication and 3-D[147]

    图  7   a—SARS-CoV-2病毒传感示意图[156] b—SARS-CoV-2刺突糖蛋白的受体结合检测原理图[157]

    Figure  7.   a—schematic diagram of SARS-CoV-2 virus detection[156] b—schematic diagram of receptor binding assay for SARS-CoV-2 spiked glycoprotein[157]

    图  8   a—POF-SPR生物传感器系统和金表面功能化过程[164] b—在实际海洋水质中不同浓度萘的SPR光谱图[166]

    Figure  8.   a—POF-SPR biosensor system and gold surface functionalization process[164] b—SPR spectra of naphthalene at different concentrations in real sea water[166]

    图  9   a—U型镀金生物传感器原理和实验流程图[173] b—传感器系统和实验检测流程图[174]

    Figure  9.   a—principle and experimental flowchart of the U-shaped gold-plated biosensor[173] b—flowchart of the sensor system and experimental assays[174]

    表  1   POF的通信性能

    Table  1   Performance of the POF for communication

    类型 芯材 波长/nm 损耗 带宽 传输速率/(Gbit·s-1) 特点 参考文献
    SI PMMA 160 dB/km 200 MGz·50m 商业ESKA MH [27]
    GI PMMA 650 140 dB/km 1.5 GHz·100m 高温高湿稳定性 [28]
    GI PMMA 650 2.32 GHz·100m 1~2.5 超低弯曲损耗 [29]
    GI CYTOP 632 200 MHz·km 多模光纤干涉仪 [30]
    GI BPT to PMMA 650 800 dB/km 4.0 GHz·50m 高热稳定性 [31]
    GI adding DBT to PS 670~680 166 dB/km~193 dB/km 4.4 GHz·50m 高带宽;热稳定性 [32]
    GI PF 850 120 高速传输 [33]
    GI halogenated polymers 850 65 dB/km 26.5 GHz·100m 10 低噪声 [34]
    SI PS 670 超高带宽数据通信 [35]
    GI PMMA 850 60 dB/km 500 MHz·km 高质量的信号RoF传输 [36]
    SI PMMA 650 500 MHz·10m 1~5(10 m) 低误比特率(10-10) [37]
    GI PMMA 850 1.04 dB/m 26.5 GHz·m 低噪声;高稳定数据传输 [38]
    下载: 导出CSV

    表  2   MPOF通信性能

    Table  2   Performance of the MPOF for communication

    x光纤 材料型号 芯孔x直径/m 带宽/THz 损耗/cm-1 色散/(ps·THz-1·cm-1) 特点 参考文献
    图 3a TOPAS 432 0.71~0.95 0.06 0.14±0.07(0.8 THz~1 THz) 超平坦近零色散,GI悬浮多孔芯 [51]
    图 3b ZEONEX 390 0.7~1.15 0.06 0.85±0.12 低EML;宽带低色散变化;功率分数(47%) [57]
    图 3c TOPAS 300 0.4~1.7 0.04 0.47±0.05 平坦近零色散 [58]
    图 3d ZEONEX 54.1 0.7~1.5 0.0145(0.7 THz) 0.469±0.246(0.8 THz~1.3 THz) 高功率分数(75%);极低弯曲损耗(3.1×10-20 cm-1) [59]
    图 3e TOPAS 0.85~1.7 0.056 <0.5 双折射(9.73×10-2);机械稳定 [62]
    图 3f TOPAS 355 0.5~2.5 0.016 超低损耗;大有效面积(1.38×106 μm2) [63]
    图 3g TOPAS 400 0.8~1.2 0.016(TE), 0.028(TM) 0.54±0.08(TE), 0.94±0.1(TM) 高双折射(0.09);低损耗;平坦色散 [64]
    图 3h TOPAS 270 0.5~1.6 0.025 0.65±0.05 低EML,高双折射(0.0911) [65]
    图 3i TOPAS 290 0.4~2.1 0.007(0.5 THz) 0.3±0.1 超低损耗;大模有效面积(4×10-6 m2) [66]
    图 3j ZEONEX 0.2~1 0.0180~0.0345(0.3 THz~0.5 THz) -0.285±0.02(0.39 THz~0.45 THz) 低EML;平坦近零色散 [70]
    图 3k ZEONEX 0.42~0.60 0.98dB/m(0.5 THz) 小尺寸;最高PLR [71]
    下载: 导出CSV

    表  3   不同液体传感器性能比较

    Table  3   Performance comparison of different liquid sensors

    分析物 频率/THz 有效材料损耗/cm-1 约束损耗 双折射率 有效面积/μm2 相对灵敏度/% 参考文献
    2.4 0.0061 1.64×10-13 cm-1 97.60 [104]
    甲醇 2.0 0.00085 2×10-16 dB/cm 0.00015 1.85×108 99.36 [105]
    乙醇 1.7 0.0057 3.85×10-13 cm-1 3.12×105 93.80 [106]
    1.4 0.0027 8.63×10-16 cm-1 0.007 1.49×105 98.92 [107]
    HCN 2.0 0.023 1.62×10-9 cm-1 0.009 85.80 [108]
    血红蛋白 1.5 1.135×10-14 cm-1 1.66×105 80.56 [109]
    福尔马林 1.8 0.0048 2.798×10-11 cm-1 9.77×105 77.71 [110]
    苯丙胺 1.0 0.02 6.2×10-8dB/m 1.39×105 89.50 [111]
    煤油 1.0 0.0025 2.16×10-8 cm-1 97.6 [112]
    神经毒剂 1.8 0.00859 1.71×10-14 cm-1 0.00682 94.40 [113]
    汽油 2.8 0.0072 8.10×10-9 cm-1 96.87 [114]
    下载: 导出CSV

    表  4   不同温度光纤传感器性能参数

    Table  4   Performance parameters of fiber optic sensors for different temperatures

    结构 长度/mm 温度/℃ 灵敏度/(nm·℃-1) 参考文献
    PMMA POF 15~45 0.1275 [115]
    UCNP-SPOF 25 25~70 [117]
    CYTOP POF 10 30~40 0.0143 [118]
    PMMA-POF 25~100 1.04 [119]
    PEDOT:PSS-SPOF 20 21~70 [121]
    PDMS-assisted BFS 27 21~25 -1.63 [122]
    SMF-FPI 100 36.0~36.4 83.13 [123]
    the SMF end-face coated with PDMS -30~85 0.698 [124]
    ZnO@Gr/MMF-TSCF-MMF 10 89~98 0.33268 [125]
    dual-core toluene and ethanol filled PCF 0~70 -11.64 [126]
    -80~0 -7.41
    SCF-EU-LPFG 5.5 30~100 0.53 [127]
    MMF-TDF-MMF 7 100~650 0.088 [128]
    650~850 0.150
    900~1000 0.285
    下载: 导出CSV
  • [1] 谢兴阳, 李庆春, 丛林. 塑料光纤研制及其最新进展[J]. 橡塑技术与装备, 2009, 35(3): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-XJJZ200903012.htm

    XIE X Y, LI Q Ch, CONG L. Research for plastic optical fiber and its latest developments[J]. China Rubber/Plastics Technology and Equipment, 2009, 35(3): 25-30(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XJJZ200903012.htm

    [2] 曾方, 周南桥. 塑料光纤制备技术的研究进展[J]. 塑料, 2003(6): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SULA200306015.htm

    ZENG F, ZHOU N Q. Development of preparation technology for plastics optical fiber[J]. Plastics, 2003(6): 63-66 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SULA200306015.htm

    [3] 李忠辉, 葛文萍, 殷宗敏, 等. 渐变型聚合物光纤研究进展[J]. 光纤与电缆及其应用技术, 2003(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYD200301001.htm

    LI Zh H, GE W P, YIN Z M, et al. Research progress of graded index polymer optical fiber[J]. Optical Fiber & Electric Cable, 2003(1): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYYD200301001.htm

    [4] 江源. 渐变折射率聚合物光纤的研究进展[J]. 光通信研究, 2000(3): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXY200003027.htm

    JIANG Y. Progress of research of the graded index polymer optical fiber[J]. Study on Optical Communication, 2000(3): 56-62(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTXY200003027.htm

    [5] 刘圣佳, 徐阳, 李长虹. 渐变型聚合物光纤的研究进展[J]. 绝缘材料, 2005(4): 46-49. DOI: 10.3969/j.issn.1009-9239.2005.04.013

    LIU Sh J, XU Y, LI Ch H. Research progress in manufacture of graded-index polymer optical fiber[J]. Insulating Materials, 2005(4): 46-49(in Chinese). DOI: 10.3969/j.issn.1009-9239.2005.04.013

    [6] 宋军, 明海. 聚合物光纤技术的最新进展[J]. 光电子技术与信息, 1999(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY199903000.htm

    SONG J, MING H. Recent development of polymer optical fiber technology[J]. Journal of Atmospheric and Environmental Optics, 1999(3): 1-5(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY199903000.htm

    [7]

    SAVOVI S, DJORDJEVICH A, SAVOVI I. Theoretical investigation of bending loss in step-index plastic optical fibers[J]. Optics Communications, 2020, 475: 126200. DOI: 10.1016/j.optcom.2020.126200

    [8] 李庆春, 信春玲, 郭毅. 塑料光纤成型技术及应用前景展望[J]. 上海塑料, 2005(1): 4-9. DOI: 10.3969/j.issn.1009-5993.2005.01.001

    LI Q Ch, XIN Ch L, GUO Y. Manufacture technology and application prospect of plastic optical fibers[J]. Shanghai Plastics, 2005(1): 4-9(in Chinese). DOI: 10.3969/j.issn.1009-5993.2005.01.001

    [9] 张洁, 郝晓东. 塑料光纤研究概况[J]. 化学推进剂与高分子材料, 2005(2): 19-22. DOI: 10.3969/j.issn.1672-2191.2005.02.005

    ZHANG J, HE X D. Research survey of plastic optical fibers[J]. Chemical Propellants & Polymer Materials, 2005(2): 19-22(in Chinese). DOI: 10.3969/j.issn.1672-2191.2005.02.005

    [10] 王豆豆, 王丽莉. 低损耗传输太赫兹波的TOPAS多孔纤维设计[J]. 红外与激光工程, 2013, 42(9): 2409-2413. DOI: 10.3969/j.issn.1007-2276.2013.09.020

    WANG D D, WANG L L. Design of TOPAS porous fiber for low-loss Terahertz wave guiding[J]. Infrared and Laser Engineering, 2013, 42(9): 2409-2413(in Chinese). DOI: 10.3969/j.issn.1007-2276.2013.09.020

    [11]

    BUNGE C A, GRIES T, BECKERS M. Polymer optical fibres fibre types, materials, fabrication, characterisation and applications[M]. Duxford, UK: Woodhead Publishing Series in Electronic and Optical Materials, 2016: 120-122.

    [12]

    GROH W. Overtone absorption in macromolecules for polymer optical fibers[J]. Die Makromolekulare Chemie, 2003, 189(12): 2861-2874.

    [13]

    ULRICH H, MLADEN J. Optoelectronic key elements for polymeric fiber transmission systems[M]. London, UK: Optical Fiber Applications, 2019: 1-3.

    [14]

    AKIMOTO Y, ASAI M, KOIKE K, et al. Poly(styrene)-based graded-index plastic optical fiber for home networks[J]. Optics Letters, 2012, 37(11): 1853-1855. DOI: 10.1364/OL.37.001853

    [15]

    KOIKE Y, KOIKE K. Progress in low-loss and high-bandwidth plastic optical fibers[J]. Journal of Polymer Science, 2011, B49(1): 2-17.

    [16]

    FASANO A, WOYESSA G, STAJANCA P, et al. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors[J]. Optical Materials Express, 2016, 6(2): 649-659. DOI: 10.1364/OME.6.000649

    [17] 阮环阳, 张万里. 含氟塑料光纤材料研究进展[J]. 浙江化工, 2019, 50(9): 1-3. DOI: 10.3969/j.issn.1006-4184.2019.09.001

    RUAN H Y, ZHANG W L. Research progress on fluoroplastic optical fiber materials[J]. Zhejiang Chemical Industry, 2019, 50(9): 1-3(in Chinese). DOI: 10.3969/j.issn.1006-4184.2019.09.001

    [18]

    LEAL-JUNIOR A G, DIAZ C A R, AVELLAR L M, et al. Polymer optical fiber sensors in healthcare applications: A comprehensive review[J]. Sensors, 2019, 19(14): 3156. DOI: 10.3390/s19143156

    [19]

    KOIKE Y, ASAI M. The future of plastic optical fiber[J]. NPG Asia Materials, 2009, 1(1): 22-28. DOI: 10.1038/asiamat.2009.2

    [20]

    JOHNSON I, YUAN W, STEFANI A, et al. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer[J]. Electronics Letters, 2011, 47(4): 271-272. DOI: 10.1049/el.2010.7347

    [21]

    MARKOS C, STEFANI A, NIELSEN K, et al. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees[J]. Optics Express, 2013, 21(4): 4758-4765. DOI: 10.1364/OE.21.004758

    [22]

    EMILIYANOV G, HØIBV P E, PEDERSEN L H, et al. Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers[J]. Sensors, 2013, 13(3): 3242-3251. DOI: 10.3390/s130303242

    [23]

    ISLAM M S, SULTANA J, ATAI J, et al. Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation[J]. Optik, 2017, 145: 398-406. DOI: 10.1016/j.ijleo.2017.07.061

    [24]

    ISLAM M S, CORDEIOR C M B, FRANCO M A R, et al. Terahertz optical fibers[Invited][J]. Optics Express, 2020, 28(11): 16089-16117. DOI: 10.1364/OE.389999

    [25]

    WOYESSA G, FASANO A, MARKOS C, et al. ZEONEX microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing[J]. Optical Materials Express, 2017, 7(1): 286-295. DOI: 10.1364/OME.7.000286

    [26]

    LEON-SAVAL S G, LWIN R, ARGYROS A. Multicore composite single-mode polymer fiber[J]. Optics Express, 2012, 20(1): 141-148. DOI: 10.1364/OE.20.000141

    [27] 孔德鹏, 张大明, 袁苑, 等. 塑料光纤的研究与应用进展[J]. 光子学报, 2019, 48(11): 1148006. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201911007.htm

    KONG D P, ZHANG D M, YUAN Y, et al. Progress in research and application of plastic optical fiber[J]. Acta Photonica Sinica, 2019, 48(11): 1148006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201911007.htm

    [28]

    ISHIGURE T, SATO M, KONDO A. High-bandwidth graded-index polymer optical fiber with high-temperature stability[J]. Journal of Lightwave Technology, 2002, 20(8): 1443-1448. DOI: 10.1109/JLT.2002.800798

    [29]

    ISHIGURE T, ARUGA Y, KOIKE Y. High-bandwidth PVDF-clad GI POF with ultra-low bending loss[J]. Journal of Lightwave Technology, 2007, 25(1): 335-345. DOI: 10.1109/JLT.2006.886666

    [30]

    CHAPALO I, THEODOSIOU A, KALLI K, et al. Multimode fiber interferometer based on graded-index polymer CYTOP fiber[J]. Journal of Lightwave Technology, 2020, 38(6): 1439-1445. DOI: 10.1109/JLT.2019.2954286

    [31]

    YAMAKI Y, ASAI M, TAKAHASHI S, et al. Novel dopant for graded-index polymer optical fiber with high-thermal stability[J]. Applied Physics Express, 2010, 3(7): 071601. DOI: 10.1143/APEX.3.071601

    [32]

    KOIKE Y, AKIMOTO Y, ASAI M, et al. Poly(styrene)-based graded-index plastic optical fiber for home networks[J]. Optics Letters, 2012, 37(11): 1853-1855. DOI: 10.1364/OL.37.001853

    [33]

    KOIKE Y, INOUE A. High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission[J]. Journal of Lightwave Technology, 2016, 34(6): 1551-1555. DOI: 10.1109/JLT.2016.2517086

    [34]

    INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber for significantly stable and robust data transmission[J]. Journal of Lightwave Technology, 2018, 36(24): 5887-5892. DOI: 10.1109/JLT.2018.2877386

    [35]

    YUAN Y, KONG D P, WANG L L. A hollow ring-core polymer optical fiber for supra-high bandwidth data communication[J]. Optics Communications, 2019, 441: 176-184. DOI: 10.1016/j.optcom.2019.02.055

    [36]

    MURAMOTO K, INOUE A, KOIKE Y. Noise and distortion reduction in OFDM radio-over-fiber link by graded-index plastic optical fiber[J]. IEEE Photonics Technology Letters, 2020, 32(13): 835-838. DOI: 10.1109/LPT.2020.2998774

    [37]

    ZUBAIDI F, MONTERO S D, VAZQUEZ C. SI POF supporting power-over-fiber in multi-gbit/s transmission for in-home networks[J]. Journal of Lightwave Technology, 2021, 39(1): 112-121. DOI: 10.1109/JLT.2020.3025444

    [38]

    AKASHI T, INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber achieved by specific copolymerization process[J]. Journal of Lightwave Technology, 2021, 39(11): 3553-3559. DOI: 10.1109/JLT.2021.3067647

    [39]

    WANG Y N, LIU Y P, ZHAO W Q, et al. Multi-ring-air-core fiber supporting numerous radially fundamental OAM modes[J]. Journal of Lightwave Technology, 2022, 40(13): 4420-4428. DOI: 10.1109/JLT.2022.3162852

    [40]

    MATSUURA M. Power-over-fiber using double-clad fibers[J]. Journal of Lightwave Technology, 2022, 40(10): 3187-3196. DOI: 10.1109/JLT.2022.3164566

    [41]

    LIU J, XU T S, ZHONG M H, et al. A W-type double-cladding IR fiber with ultra-high numerical aperture[J]. Journal of Lightwave Technology, 2021, 39(7): 2158-2163. DOI: 10.1109/JLT.2020.3045814

    [42]

    CI Y J, REN F, LEI X, et al. A weakly-coupled air-hole-bow-tie-assisted few-mode fiber for short-haul MDM across C+L band[J]. Optical and Quantum Electronics, 2023, 55(10): 924. DOI: 10.1007/s11082-023-05176-y

    [43]

    YANG Zh X, ZHAO Y F, ZHANG Y F, et al. A novel few-mode multi-core fiber with large effective mode area and low inter-core crosstalk[J]. Optik, 2023, 273: 170416. DOI: 10.1016/j.ijleo.2022.170416

    [44]

    HABIB M A, REZA M S, ABDULARAZAK L F, et al. Extremely high birefringent and low loss microstructure optical waveguide: Design and analysis[J]. Optics Communications, 2019, 446: 93-99. DOI: 10.1016/j.optcom.2019.04.060

    [45]

    RAHAMAN M E, MONDAL H S, HOSSAIN M B, et al. Simulation of a highly birefringent photonic crystal fiber in terahertz frequency region[J]. SN Applied Sciences, 2020, 2(8): 1435. DOI: 10.1007/s42452-020-03210-2

    [46]

    EIJKELENBORG M, ARGYROS A, ZAGARI J, et al. Microstructured polymer optical fibre[J]. Optics Express, 2001, 9(7): 319-327. DOI: 10.1364/OE.9.000319

    [47] 夏长明, 周桂耀. 微结构光纤的研究进展及展望[J]. 激光与光电子学进展, 2019, 56(17): 170603. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201917004.htm

    XIA Ch M, ZHOU G Y. Progress and prospect of microstructured optical fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170603(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201917004.htm

    [48] 王豆豆, 王丽莉, 张涛, 等. 低损耗高双折射太赫兹TOPAS光子带隙光纤[J]. 光子学报, 2014, 43(6): 606002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406002.htm

    WANG D D, WANG L L, ZHANG T, et al. Low loss and high birefringence TOPAS photonic bandgap fiber at terahertz frequency[J]. Acta Photonica Sinica, 2014, 43(6): 606002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406002.htm

    [49]

    MA T, MARKOV A, WANG L L, et al. Graded index porous optical fibers-dispersion management in terahertz range[J]. Optics Express, 2015, 23(6): 7856-7869. DOI: 10.1364/OE.23.007856

    [50]

    ISLAM M S, SULTANA J, DINOVITSER A, et al. A novel ZEONEX based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications[J]. Optics Communications, 2018, 413: 242-248. DOI: 10.1016/j.optcom.2017.12.061

    [51]

    MEI S, KONG D P, WANG L L, et al. Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission[J]. Optical Fiber Technology, 2019, 52: 101946. DOI: 10.1016/j.yofte.2019.101946

    [52]

    HABIB M A, ANOWER M S, HASAN M R. Highly birefringent and low effective material loss microstructure fiber for THz wave guidance[J]. Optics Communications, 2018, 423: 140-144. DOI: 10.1016/j.optcom.2018.04.022

    [53]

    HABIB A, ANOWER S. Low loss highly birefringent porous core fiber for single mode terahertz wave guidance[J]. Current Optics and Photonics, 2018, 2(3): 215-220.

    [54]

    ISLAM M S, SULTANA J, FAISAL M, et al. A modified hexagonal photonic crystal fiber for terahertz applications[J]. Optical Materials, 2018, 79: 336-339. DOI: 10.1016/j.optmat.2018.03.054

    [55]

    SULTANA J, ISLAM M S, FAISAL M, et al. Highly birefringent elliptical core photonic crystal fiber for terahertz application[J]. Optics Communications, 2018, 407: 92-96. DOI: 10.1016/j.optcom.2017.09.020

    [56]

    HABIB M A, ANOWER M S. Design and numerical analysis of highly birefringent single mode fiber in THz regime[J]. Optical Fiber Technology, 2019, 47: 197-203. DOI: 10.1016/j.yofte.2018.11.006

    [57]

    HABIB M A, ANOWER M S. Square porous core microstructure fiber for low loss terahertz applications[J]. Optics and Spectroscopy, 2019, 126(5): 607-613. DOI: 10.1134/S0030400X19050126

    [58]

    YAKASAI I K, ABAS P E, ALI S, et al. Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation[J]. Optical and Quantum Electronics, 2019, 51(4): 122. DOI: 10.1007/s11082-019-1832-x

    [59]

    UPADHYAY A, SINGH S, TAYA S, et al. A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: An analysis with core porosity[J]. Applied Nanoscience, 2021, 11(3): 1021-1030. DOI: 10.1007/s13204-020-01664-9

    [60]

    CHEN H B, CHEN D R, HONG Zh. Squeezed lattice elliptical-hole terahertz fiber with high birefringence[J]. Applied Optics, 2009, 48(20): 3943-3947. DOI: 10.1364/AO.48.003943

    [61]

    FAISAL M, ISLAM M S. Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes[J]. Journal of Applied Optics, 2018, 57(13): 3340-3347. DOI: 10.1364/AO.57.003340

    [62]

    ISLAM M S, FAISAL M, ABDUR R. Dispersion flattened extremely high-birefringent kagome lattice elliptic core photonic crystal fiber in THz regime[J]. Optical and Quantum Electronics, 2019, 51(1): 35. DOI: 10.1007/s11082-019-1744-9

    [63]

    AHMED F, ROY S, AHMED K. A novel star shape photonic crystal fiber for low loss terahertz pulse propagation[J]. Nano Communication Networks, 2019, 19: 26-32. DOI: 10.1016/j.nancom.2018.11.002

    [64]

    SINGER A M, HAMEED M F, HEIKAL A M, et al. Highly birefringent slotted core photonic crystal fiber for terahertz waveguiding[J]. Optical and Quantum Electronics, 2021, 53(1): 9. DOI: 10.1007/s11082-020-02643-8

    [65]

    AMINUL I M, RAKIBUL I M, MOINUL I K M, et al. Highly birefringent slotted core photonic crystal fiber for THz wave propagation[J]. Physics of Wave Phenomena, 2020, 28: 58-67. DOI: 10.3103/S1541308X20010021

    [66]

    ISLAM M A, ISLAM M R, TASNIM Z, et al. Low-loss and dispersion-flattened octagonal porous core PCF for terahertz transmission applications[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44(4): 1583-1592. DOI: 10.1007/s40998-020-00337-1

    [67]

    JIBON R H, BULBUL A, NAHID A, et al. Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide[J]. Optical Review, 2021, 28(5): 564-572. DOI: 10.1007/s10043-021-00698-w

    [68]

    ASADUZZAMAN S, REHANA H, BHUIYAN T, et al. Extremely high birefringent slotted core umbrella-shaped photonic crystal fiber in terahertz regime[J]. Applied Physics, 2022, B128(8): 148.

    [69]

    HOSSAIN M S, SEN S, HOSSAIN M M. Reduction of effective material loss (EML) using decagonal photonic crystal fiber (D-PCF) for communication applications in the terahertz wave pulse[J]. Optical and Quantum Electronics, 2022, 54(10): 658. DOI: 10.1007/s11082-022-04050-7

    [70]

    MEI S, KONG D P, MU Q Y, et al. A porous core ZEONEX THz fiber with low loss and small dispersion[J]. Optical Fiber Technology, 2022, 69: 102834. DOI: 10.1016/j.yofte.2022.102834

    [71]

    XUE L, SHENG X Zh, JIA H Q, et al. Single-polarization low loss terahertz hollow-core anti-resonant fiber with high polarization loss ratio[J]. Optics Communications, 2023, 537: 129460. DOI: 10.1016/j.optcom.2023.129460

    [72]

    TANVIR J, AKHTAR S, TAHHAN S R, et al. Terahertz spectroscopic based bending effect inspection on hollow-core anti-resonant fiber[J]. Optical and Quantum Electronics, 2023, 55(4): 305. DOI: 10.1007/s11082-023-04607-0

    [73]

    CHEN J, TENG Ch X, KUANG R F, et al. Plastic optical fiber integrated with smartphone for gait monitoring[J]. IEEE Sensors Journal, 2023, 23(16): 18207-18218. DOI: 10.1109/JSEN.2023.3291173

    [74]

    TOMMASI F D, MASSARONI C, CAPONERO M A, et al. FBG-based mattress for heart rate monitoring in different breathing conditions[J]. IEEE Sensors Journal, 2023, 23(13): 14114-14122. DOI: 10.1109/JSEN.2023.3275323

    [75]

    CHEN P N, WANG B J, PENG H Sh, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1901971. DOI: 10.1002/adma.201901971

    [76]

    QUANDT B M, BRAUN F, FERRARIO D, et al. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres[J]. Journal of the Royal Society Interface, 2017, 14(8): 20170060.

    [77]

    HASEDA Y, BONEFACINO J, TAM H Y, et al. Measurement of pulse wave signals and blood pressure by a plastic optical fiber FBG sensor[J]. Sensors, 2019, 19(23): 5088. DOI: 10.3390/s19235088

    [78]

    LIANG H W, WANG Y Y, KAN L L, et al. Wearable and multifunctional self-mixing microfiber sensor for human health monitoring[J]. IEEE Sensors Journal, 2023, 23(3): 2122-2127. DOI: 10.1109/JSEN.2022.3225196

    [79]

    PANG Y N, LIU B, LIU J, et al. Singlemode-multimode-singlemode optical fiber sensor for accurate blood pressure monitoring[J]. Journal of Lightwave Technology, 2022, 40(13): 4443-4450. DOI: 10.1109/JLT.2022.3155194

    [80]

    PRESTI D, MASSARONI C, D'ABBRACCIO J, et al. Wearable system based on flexible FBG for respiratory and cardiac monitoring[J]. IEEE Sensors Journal, 2019, 19(17): 7391-7398. DOI: 10.1109/JSEN.2019.2916320

    [81]

    PANG Y N, LIU B, LIU J, et al. Wearable optical fiber sensor based on a bend singlemode-multimode-singlemode fiber structure for respiration monitoring[J]. IEEE Sensors Journal, 2021, 21(4): 4610-4617. DOI: 10.1109/JSEN.2020.3032646

    [82]

    LEAL-JUNIOR A G, DÍAZ C R, LEITãO C, et al. Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements[J]. Optics & Laser Technology, 2019, 109: 429-436. DOI: 10.5768/JAO201940.0302004

    [83]

    GOMES G L, MELLO R, LEAL-JUNIOR A. Respiration frequency rate monitoring using smartphone-integrated polymer optical fibers sensors with cloud connectivity[J]. Optical Fiber Technology, 2023, 78: 103313. DOI: 10.1016/j.yofte.2023.103313

    [84]

    KUANG R F, YE Y F, CHEN Z Y, et al. Low-cost plastic optical fiber integrated with smartphone for human physiological monitoring[J]. Optical Fiber Technology, 2022, 71: 102947. DOI: 10.1016/j.yofte.2022.102947

    [85]

    ARMAN A, DANIELE T. Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate[J]. IEEE Sensors Journal, 2019, 19(9): 3282-3287. DOI: 10.1109/JSEN.2019.2894834

    [86]

    HAN P, LI L Q, ZHANG H, et al. Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring[J]. Optical Fiber Technology, 2021, 64: 102541. DOI: 10.1016/j.yofte.2021.102541

    [87]

    XU W, SHEN Y, YU Ch Y, et al. Long modal interference in multimode fiber and its application in vital signs monitoring[J]. Optics Communications, 2020, 474: 126100. DOI: 10.1016/j.optcom.2020.126100

    [88]

    LEBER A, CHOLST B, SANDT J, et al. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations[J]. Advanced Functional Materials, 2019, 29(5): 1802629. DOI: 10.1002/adfm.201802629

    [89]

    BAI H D, LI Sh, TU Y Q, et al. Stretchable distributed fiber-optic sensors[J]. Science, 2020, 370(6518): 848-852. DOI: 10.1126/science.aba5504

    [90]

    LI H, LI H B, LOU X P, et al. Soft optical fiber curvature sensor for finger joint angle proprioception[J]. Optik, 2019, 179: 298-304. DOI: 10.1016/j.ijleo.2018.10.187

    [91]

    ABRO Z, HONG Ch Y, CHEN N L, et al. A fiber Bragg grating-based smart wearable belt for monitoring knee joint postures[J]. Textile Research Journal, 2019, 90(3/4): 386-394.

    [92]

    REZENDE A, ALVES C, MARQUES I, et al. Polymer optical fiber goniometer: A new portable, low cost and reliable sensor for joint analysis[J]. Sensors, 2018, 18(12): 4293. DOI: 10.3390/s18124293

    [93]

    LI J, LIU J, LI Ch, et al. Wearable wrist movement monitoring using dual surface-treated plastic optical fibers[J]. Materials, 2020, 13(15): 3291. DOI: 10.3390/ma13153291

    [94]

    LEAL-JUNIO A, GUO J J, MIN R, et al. Photonic smart bandage for wound healing assessment[J]. Photonics Research, 2020, 9(3): 272.

    [95]

    TANG Z J, GOMEZ D, HE Ch Y, et al. A U-shape fibre-optic pH sensor based on hydrogen bonding of ethyl cellulose with a sol-gel matrix[J]. Journal of Lightwave Technology, 2021, 39(5): 1557-1564. DOI: 10.1109/JLT.2020.3034563

    [96]

    FENG Y G, JU L H, JIA H, et al. Intentionally light-loss carbon-optic fiber (COF) twisted sensor for calf strength sensing via monitoring vastus medialis[J]. IEEE Sensors Journal, 2023, 23(9): 9271-9279. DOI: 10.1109/JSEN.2023.3244576

    [97]

    IQBAL F, BISWAS S, BULBUL A, et al. Alcohol sensing and classification using PCF-based sensor[J]. Sensing and Bio-Sensing Research, 2020, 30: 100384. DOI: 10.1016/j.sbsr.2020.100384

    [98]

    HOSSAIN M S, HUSSAIN N, HOSSAIN Z, et al. Performance analysis of alcohols sensing with optical sensor procedure using circular photonic crystal fiber (C-PCF) in the terahertz regime[J]. Sensing and Bio-Sensing Research, 2022, 35: 100469. DOI: 10.1016/j.sbsr.2021.100469

    [99]

    GOWRI A, ALLWYN R, RAMAKRISHNA B, et al. U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring[J]. Optical Fiber Technology, 2019, 47: 15-20. DOI: 10.1016/j.yofte.2018.11.019

    [100]

    ZHAO H X, WANG F, WANG Zh Y, et al. Refractive index sensor based on a gradually hot-pressed flatted plastic optical fiber[J]. Optics Communications, 2023, 532: 129258. DOI: 10.1016/j.optcom.2023.129258

    [101]

    LIU X J, QU Ch F, ZHOU S J, et al. Simple and stable gas-liquid two-phase optical fiber sensor for acetone based on cholesteric liquid crystal[J]. Optics Communications, 2023, 526: 128890. DOI: 10.1016/j.optcom.2022.128890

    [102]

    BAO L F, DONG X Y, SHEN Ch Y, et al. High sensitivity liquid level sensor based on a hollow core fiber structure[J]. Optics Communications, 2021, 499: 127279. DOI: 10.1016/j.optcom.2021.127279

    [103]

    YE Y F, ZHAO Ch J, WANG Zh, et al. Portable multihole plastic optical fiber sensor for liquid-level and refractive index monitoring[J]. IEEE Sensors Journal, 2023, 23(3): 2161-2168. DOI: 10.1109/JSEN.2022.3228224

    [104]

    REZA S, HABIB A. Extremely sensitive chemical sensor for terahertz regime based on a hollow-core photonic crystal fibre[J]. Ukrainian Journal of Physical Optics, 2020, 21(1): 8-14. DOI: 10.3116/16091833/21/1/8/2020

    [105]

    KHAN M, ALI F, ISLAM M. THz sensing of CoViD-19 disinfecting products using photonic crystal fiber[J]. Sensing and Bio-Sensing Research, 2021, 33(3): 100447.

    [106]

    JIBON R H, RAHAMAN M E, ALAHE M A. Detection of primary chemical analytes in the THz regime with photonic crystal fiber[J]. Sensing and Bio-Sensing Research, 2021, 33: 100427. DOI: 10.1016/j.sbsr.2021.100427

    [107]

    HASAN M, PANDEY T, HABIB M. Highly sensitive hollow-core fiber for spectroscopic sensing applications[J]. Sensing and Bio-Sensing Research, 2021, 34(4): 100456.

    [108]

    ISLAM M S, SULTANA J, DINOVITSER A, et al. Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime[J]. Optics Communications, 2018, 426: 341-347. DOI: 10.1016/j.optcom.2018.05.030

    [109]

    AHMED K, AHMED F, ROY S, et al. Refractive index-based blood components sensing in terahertz spectrum[J]. IEEE Sensors Journal, 2019, 19(9): 3368-3375. DOI: 10.1109/JSEN.2019.2895166

    [110]

    BULBUL A, JIBON R, DAS S, et al. PCF based formalin detection by exploring the optical properties in THz regime[J]. Nanoscience & Nanotechnology-Asia, 2021, 11(3): 314-321.

    [111]

    MONIR M, UDDIN M, SEN S. Design of a novel photonic crystal fiber and numerical analysis of sensitivity for the detection of illegal drugs in terahertz regime[J]. Sensing and Bio-Sensing Research, 2023, 39(4): 100551.

    [112]

    YAKASAI I K, ABAS P L, BEGUM F. Proposal of novel photonic crystal fibre for sensing adulterated petrol and diesel with kerosene in terahertz frequencies[J]. IET Optoelectronics, 2020, 14(5): 319-326. DOI: 10.1049/iet-opt.2019.0141

    [113]

    HOSSAIN M B, PODDER E, MONDAL H S, et al. Bane chemicals detection through photonic crystal fiber in THz regime[J]. Optical Fiber Technology, 2020, 54: 102102. DOI: 10.1016/j.yofte.2019.102102

    [114]

    FERDOUS A, ANOWER M, MUSHA M A, et al. A heptagonal PCF-based oil sensor to detect fuel adulteration using terahertz spectrum[J]. Sensing and Bio-Sensing Research, 2022, 36: 100485. DOI: 10.1016/j.sbsr.2022.100485

    [115]

    ZHAO H X, WANG F, CHENG P H. A plastic optic fiber sensor with temperature compensation for refractive index measurement[J]. Optical Fiber Technology, 2023, 79(2): 103365.

    [116]

    TIAN K, FARRELL G, LEWIS E, et al. A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating[J]. Measurement Science and Technology, 2018, 29(8): 085104. DOI: 10.1088/1361-6501/aac992

    [117]

    GUO J J, ZHOU B Q, YANG Ch X, et al. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring[J]. Advanced Functional Materials, 2019, 29(33): 1902898. DOI: 10.1002/adfm.201902898

    [118]

    SUI K Y, IOANNOU A, MENEGHETTI M, et al. Temperature sensing of the brain enabled by directly inscribed Bragg gratings in CYTOP polymer optical fiber implants[J]. Optical Fiber Technology, 2023, 80: 103478. DOI: 10.1016/j.yofte.2023.103478

    [119]

    LEAL-JUNIOR A, FRIZERA-NETO A, MARQUES C, et al. A polymer optical fiber temperature sensor based on material features[J]. Sensors, 2018, 18(1): 301. DOI: 10.3390/s18010301

    [120]

    SU H Y, ZHANG Y D, MA K, et al. Tip packaged high-temperature miniature sensor based on suspended core optical fiber[J]. Journal of Lightwave Technology, 2020, 38(15): 4160-4165.

    [121]

    KHAN M. Development of a highly sensitive and low hysteresis temperature sensing system with PEDOT: PSS containing polymer sensing membrane[J]. IEEE Sensors Journal, 2023, 23(1): 669-676. DOI: 10.1109/JSEN.2022.3223380

    [122]

    WANG H X, LIAO M M, XIAO H F, et al. High sensitivity temperature sensor based on a PDMS-assisted bow-shaped fiber structure[J]. Optics Communications, 2021, 481: 126536. DOI: 10.1016/j.optcom.2020.126536

    [123]

    LIU Q P, WANG D Y, WANG Ch F, et al. Ultrasensitive temperature sensor based on optic fiber Fabry-Pérot interferometer with vernier effect[J]. Optics Communications, 2023, 541: 129567. DOI: 10.1016/j.optcom.2023.129567

    [124]

    HU J H, LI D, LIU Zh G, et al. Polymer-coated fiber-optic Fabry-Perot interferometer-based temperature sensor with high sensitivity[J]. Optical Fiber Technology, 2023, 81: 103471. DOI: 10.1016/j.yofte.2023.103471

    [125]

    YANG T Y, LIU Ch, LIU X, et al. Fiber optic high temperature sensor based on ZnO composite graphene temperature sensitive material[J]. Optics Communications, 2022, 515: 128222. DOI: 10.1016/j.optcom.2022.128222

    [126]

    QIU Sh, YUAN J H, ZHOU X, et al. Highly sensitive temperature sensing based on all-solid cladding dual-core photonic crystal fiber filled with the toluene and ethanol[J]. Optics Communications, 2020, 477: 126357. DOI: 10.1016/j.optcom.2020.126357

    [127]

    WANG X Y, WANG Y, LING Q, et al. Seven-core fiber embedded ultra-long period grating for curvature, torsion or temperature sensing[J]. Optics Communications, 2023, 536: 129351. DOI: 10.1016/j.optcom.2023.129351

    [128]

    LEI X Q, FENG Y, DONG X P. High-temperature sensor based on a special thin-diameter fiber[J]. Optics Communications, 2020, 463: 125386. DOI: 10.1016/j.optcom.2020.125386

    [129]

    PIZZAIA J P L, CASTELLANI C E S, LEAL-JUNIOR A G. Highly sensitive temperature sensing based on a birefringent fiber Sagnac loop[J]. Optical Fiber Technology, 2022, 72: 102949. DOI: 10.1016/j.yofte.2022.102949

    [130]

    LIU Q P, WANG Ch F, LIU W F, et al. Large-range and high-sensitivity fiber optic temperature sensor based on Fabry-Pérot interferometer combined with FBG[J]. Optical Fiber Technology, 2022, 68: 102794. DOI: 10.1016/j.yofte.2021.102794

    [131]

    ZHANG Y X, YU J J, LIU P L, et al. All-fiber temperature and humidity sensor based on photopolymer and polydimethylsiloxane with low-crosstalk and high-sensitivity[J]. Optical Fiber Technology, 2023, 80: 103410. DOI: 10.1016/j.yofte.2023.103410

    [132]

    LIU J X, XU M J, ABBAS L G, et al. High-sensitivity temperature sensor based on Mach-Zehnder interference of asymmetric taper-shaped ultraviolet glue[J]. Optical Fiber Technology, 2022, 72: 102997. DOI: 10.1016/j.yofte.2022.102997

    [133]

    DUPUIS A, GUO N, GAO Y, et al. Prospective for biodegradable microstructured optical fibers[J]. Optics Letters, 2007, 32(2): 109-111. DOI: 10.1364/OL.32.000109

    [134]

    SHADMAN S, NGUYEN-DANG T, DAS T, et al. Microstructured biodegradable fibers for advanced control delivery[J]. Advanced Functional Materials, 2020, 30(13): 1910283. DOI: 10.1002/adfm.201910283

    [135]

    GIEREJ A, ROCHLITZ K, FILIPKOWSKI A, et al. Microstructured optical fiber made from biodegradable and biocompatible poly(D, L-Lactic Acid) (PDLLA)[J]. Journal of Lightwave Technology, 2023, 41(1): 275-285. DOI: 10.1109/JLT.2022.3205451

    [136]

    ZHANG Y X, NING Y G, ZHANG M, et al. Spider silk-based fiber magnetic field sensor[J]. Journal of Lightwave Technology, 2021, 39(20): 6631-6636. DOI: 10.1109/JLT.2021.3100896

    [137]

    ORELMA H, HOKKANEN A, LEPPäNEN I, et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications[J]. Cellulose, 2020, 27(3): 1543-1553. DOI: 10.1007/s10570-019-02882-3

    [138]

    FUJIWARA E, CABRAL T D, SATO M, et al. Agarose-based structured optical fibre[J]. Scientific Reports, 2020, 10: 7035. DOI: 10.1038/s41598-020-64103-3

    [139]

    GUO J J, LIU X Y, NAN J, et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 2016, 28(46): 10244-10249. DOI: 10.1002/adma.201603160

    [140]

    MISHRA A, DÉSÉVÉDAVY F, PETIT L, et al. Core-clad phosphate glass fibers for biosensing[J]. Materials Science and Engineering, 2019, C96(1): 458-465.

    [141]

    PANG W, XIAO Z Y, WEI X B, et al. Biocompatible polymer optical fiber with a strongly scattering spherical end for interstitial photodynamic therapy[J]. Optics Letters, 2023, 48(15): 3849-3852. DOI: 10.1364/OL.497596

    [142]

    JORGENSON R C, YEE S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators, 1993, B12(3): 213-220.

    [143]

    LIU W, LIU Zh H, ZHANG Y, et al. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: A review[J]. Optics & Laser Technology, 2022, 152(5): 108167.

    [144]

    JING G, ZHOU J Q, LI K W, et al. Refractive index sensing based on a side-polished macrobend plastic optical fiber combining surface plasmon resonance and macrobending loss[J]. IEEE Sensors Journal, 2019, 19(14): 5665-5669. DOI: 10.1109/JSEN.2019.2908418

    [145]

    CENNAMO N, ARCADIO F, MARLETTA V, et al. A magnetic field sensor based on SPR-POF platforms and ferrofluids[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9504010.

    [146]

    ZHANG Q, LIU H L, LI B, et al. High sensitivity surface plasmon resonance magnetic field sensor based on Au/gold nanoparticles/magnetic fluid in the hollow core fiber[J]. IEEE Sensors Journal, 2023, 23(12): 12899-12905. DOI: 10.1109/JSEN.2023.3273708

    [147]

    WANG Y, WANG J G, SHAO Y, et al. Highly sensitive surface plasmon resonance humidity sensor based on a polyvinyl-alcohol-coated polymer optical fiber[J]. Biosensors, 2021, 11(11): 461. DOI: 10.3390/bios11110461

    [148]

    TENG Ch X, LI M S, CHENG Y, et al. Investigation of U-shape tapered plastic optical fibers based surface plasmon resonance sensor for RI sensing[J]. Optik, 2022, 251: 168461. DOI: 10.1016/j.ijleo.2021.168461

    [149]

    XUE P, XU Y, QI J, et al. Mechanically hot-pressed flattened plastic optical fiber-based SPR sensor and its RI sensing[J]. Optics Communications, 2022, 522: 128635. DOI: 10.1016/j.optcom.2022.128635

    [150]

    ARCADIO F, ZENI L, CENNAMO N. Exploiting plasmonic phenomena in polymer optical fibers to realize a force sensor[J]. Sensors, 2022, 22(6): 2391. DOI: 10.3390/s22062391

    [151]

    LU Y P, TIAN F J, CHEN Y Zh, et al. Characteristics of a capillary single core fiber based on SPR for hydraulic pressure sensing[J]. Optics Communications, 2023, 530: 129125. DOI: 10.1016/j.optcom.2022.129125

    [152]

    LIU B, LIU J, PING L, et al. Rapid detection of SARS-CoV-2 nucleocapsid protein by a label-free biosensor based on optical fiber cylindrical micro-resonator[J]. IEEE Sensors Journal, 2023, 23(12): 12511-12518. DOI: 10.1109/JSEN.2023.3274110

    [153]

    WEI Y, LIU Ch B, ZHANG Y H, et al. All-Fiber SPR microfluidic chip for arctigenin detection[J]. IEEE Sensors Journal, 2023, 23(12): 12838-12844. DOI: 10.1109/JSEN.2023.3269032

    [154]

    HU J, SONG E L, LIU Y H, et al. Fiber laser-based lasso-shaped biosensor for high precision detection of cancer biomarker-CEACAM5 in serum[J]. Biosensors, 2023, 13(7): 674. DOI: 10.3390/bios13070674

    [155]

    D'MELLO Y, SKORIC J, MOUKARZEL L, et al. Wearable fiber optic sensors for biomechanical sensing via joint angle detection[C]// Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Berlin, Germang: IEEE Engineering in Medicine and Biology Society, 2019: 32221-33225.

    [156]

    CENNAMO N, D'AGOSTINO G, PERRI C, et al. Proof of concept for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers[J]. Sensors, 2021, 21(5): 1681. DOI: 10.3390/s21051681

    [157]

    CENNAMO N, PASQUARDINI L, ARCADIO F, et al. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor[J]. Talanta, 2021, 233: 122532. DOI: 10.1016/j.talanta.2021.122532

    [158]

    CENNAMO N, AGOSTINO G D, PASQUARDINI L, et al. (INVITED)Quantitative detection of SARS-CoV-2 virions in aqueous mediums by IoT optical fiber sensors[J]. Results in Optics, 2021, 5: 100177. DOI: 10.1016/j.rio.2021.100177

    [159]

    HABIB A, RASHED A, HAGEEN H M, et al. Extremely sensitive photonic crystal fiber-based cancer cell detector in the terahertz regime[J]. Plasmonics, 2021, 16(4): 1297-1306. DOI: 10.1007/s11468-021-01409-6

    [160]

    MOHAMMED N A, KHEDR O E, RABAIE E M, et al. Early detection of brain cancers biomedical sensor with low losses and high sensitivity in the terahertz regime based on photonic crystal fiber technology[J]. Optical and Quantum Electronics, 2023, 55(3): 230. DOI: 10.1007/s11082-022-04515-9

    [161]

    DAS S, MANDAL B, RAO V R, et al. Detection of tomato leaf curl new delhi virus DNA using U-bent optical fiber-based LSPR probes[J]. Optical Fiber Technology, 2022, 74: 103108. DOI: 10.1016/j.yofte.2022.103108

    [162]

    ALAM M K, VADIVEL K, NATESAN A, et al. Design of highly sensitive biosensors using hollow-core microstructured fibers for plasma sensing in aids with human metabolism[J]. Optical and Quantum Electronics, 2023, 55(2): 188. DOI: 10.1007/s11082-022-04514-w

    [163]

    GAMAL Y, YOUNIS B M, FURNISS D, et al. Mid-infrared water pollutant sensor based on SPR-PCF[J]. Optical and Quantum Electronics, 2023, 55(11): 966. DOI: 10.1007/s11082-023-05207-8

    [164]

    CENNAMO N, ZENI L, TORTORA P, et al. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment[J]. Talanta, 2018, 178(258): 955-961.

    [165]

    FAIZ F, CRAN M J, ZHANG J H, et al. Graphene oxide doped alginate coated optical fiber sensor for the detection of perfluorooctanoic acid in water[J]. IEEE Sensors Journal, 2023, 23(12): 12861-12867. DOI: 10.1109/JSEN.2023.3271657

    [166]

    CENNAMO N, ZENI L, RICCA E, et al. Detection of naphthalene in sea-water by a label-free plasmonic optical fiber biosensor[J]. Talanta, 2019, 194: 289-297. DOI: 10.1016/j.talanta.2018.10.051

    [167]

    TENG Ch X, SHAO P, LI Sh W, et al. Double-side polished U-shape plastic optical fiber based SPR sensor for the simultaneous measurement of refractive index and temperature[J]. Optics Communications, 2022, 525: 128844. DOI: 10.1016/j.optcom.2022.128844

    [168]

    TIAN Sh, XIONG M, CHEN M, et al. Highly sensitive cascaded fiber SPR sensor with temperature compensation[J]. Optics Communications, 2023, 533: 129277. DOI: 10.1016/j.optcom.2023.129277

    [169]

    HIRAI Y, SUZUKI Y, MORISAWA M. Two-wavelength dye-doped swellable clad POF humidity sensor[J]. IEEE Sensors Journal, 2023, 23(8): 8435-8442. DOI: 10.1109/JSEN.2023.3255888

    [170]

    ZHANG M Zh, ZHU G X, LI T Sh, et al. A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water[J]. Optics Communications, 2020, 462: 124750. DOI: 10.1016/j.optcom.2019.124750

    [171]

    ZHANG Ch L, ZHANG X D, LIU C, et al. Corrosion sensor based on surface plasmon resonance effect of core-offset splicing fiber[J]. Optical Fiber Technology, 2023, 80: 103412. DOI: 10.1016/j.yofte.2023.103412

    [172]

    CAO Sh Q, SHAO Y, WANG Y, et al. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber[J]. Optics Express, 2018, 26(4): 3988-3994. DOI: 10.1364/OE.26.003988

    [173]

    ARCAS A D S, DUTRA F D S, ALLIL R C S B, et al. Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors[J]. Sensors, 2018, 18(2): 648. DOI: 10.3390/s18020648

    [174]

    PESAVENTO M, PROFUMO A, MERLI D, et al. An optical fiber chemical sensor for the detection of copper(Ⅱ) in drinking water[J]. Sensors, 2019, 19(23): 5246. DOI: 10.3390/s19235246

    [175]

    PESAVENTO M, ZENI L, LETIZIA D, et al. SPR-optical fiber-molecularly imprinted polymer sensor for the detection of furfural in wine[J]. Biosensors, 2021, 11(3): 72. DOI: 10.3390/bios11030072

  • 期刊类型引用(0)

    其他类型引用(1)

图(9)  /  表(4)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-09-27
  • 发布日期:  2024-07-24

目录

/

返回文章
返回