Processing math: 60%
高级检索

1.55 μm激光雷达高原机场下击暴流探测应用研究

牛向华, 黄轩, 朱文会, 郑佳锋, 唐顺仙, 任涛, 程振

牛向华, 黄轩, 朱文会, 郑佳锋, 唐顺仙, 任涛, 程振. 1.55 μm激光雷达高原机场下击暴流探测应用研究[J]. 激光技术, 2024, 48(3): 318-326. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.004
引用本文: 牛向华, 黄轩, 朱文会, 郑佳锋, 唐顺仙, 任涛, 程振. 1.55 μm激光雷达高原机场下击暴流探测应用研究[J]. 激光技术, 2024, 48(3): 318-326. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.004
NIU Xianghua, HUANG Xuan, ZHU Wenhui, ZHENG Jiafeng, TANG Shunxian, REN Tao, CHENG Zhen. Application research of 1.55 μm wind LiDAR in detecting downburst on a plateau airport[J]. LASER TECHNOLOGY, 2024, 48(3): 318-326. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.004
Citation: NIU Xianghua, HUANG Xuan, ZHU Wenhui, ZHENG Jiafeng, TANG Shunxian, REN Tao, CHENG Zhen. Application research of 1.55 μm wind LiDAR in detecting downburst on a plateau airport[J]. LASER TECHNOLOGY, 2024, 48(3): 318-326. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.004

1.55 μm激光雷达高原机场下击暴流探测应用研究

基金项目: 

四川省自然科学基金资助项目 2022NSFSC0209

详细信息
    通讯作者:

    牛向华, nxh0322@126.com

  • 中图分类号: TN958.98;P412.25

Application research of 1.55 μm wind LiDAR in detecting downburst on a plateau airport

  • 摘要: 为了探究激光雷达在湿下击暴流天气时的风场探测效果和低空风切变识别能力,采用多元资料结合具体事件进行理论分析和数据验证的方法,利用西宁曹家堡国际机场的测风激光雷达数据,结合地面观测记录,对2021-05-18的一次湿下击暴流过程进行了分析和研究。结果表明,下击暴流具有复杂的风场结构,主体到达机场前,首先造成了超过14 m/s的外流,并与环境风耦合形成逆风切变辐合线,且最强外流区位于辐合线后侧1 km~2 km;下击暴流抵达跑道上空时,造成了地面辐散风场,辐散中心风速远小于外流边缘且垂直气流存在着剧烈变化,下击暴流共持续约10 min;测风激光雷达对雷暴云内部垂直气流分布、跑道区域下击暴流辐散风场的水平和垂直结构以及地面风场辐合线的形成和演变均有良好的识别效果,交互使用雷达不同探测模式和数据产品有利于机场低空风切变的监测和预警。该研究为激光雷达在下击暴流风切变预报和研究中的应用提供了参考。
    Abstract: To explore the wind field detection effect and low-level wind shear identification ability of light detection and ranging (LiDAR) during a wet downburst, a typical wet downburst storm process on 2021-05-18 was analyzed and investigated by using wind LiDAR and meteorological observation records from Xining Caojiapu International Airport, and using the method of combining multiple data with specific events for theoretical analysis and data validation. The results show that the downburst has complex wind field structures. Before the downburst arrived at the airport, the downdraft outflow exceeded 14 m/s, which is coupled with the ambient wind to form a headwind shear convergence line, and the strongest outflow region is located 1 km to 2 km behind the convergence line. When the downburst arrives over the runway, it creates a divergence wind field on the ground. The wind speed in the center of the divergence area is much lower than that at the edge of the outflow, the vertical airflow had drastic changes, and the downburst lasted for about 10 min. The LiDAR has a good identification of the vertical airflow distribution inside the cumulonimbus, the fine structure of the divergence wind field, and the formation and evolution of the convergence line. The interactive use of different detection patterns and data products of LiDAR is very conducive to monitoring and warning of low-level wind shear at the airport. This study provides a reference for the application of LiDAR in the prediction and research of downburst wind shear.
  • 对某些材料沿一定方向施加电场时,材料折射率会受到外加电场的影响,而且折射率的大小还与电场方向有关,导致从这些材料透射的光偏振态发生改变,产生电光效应。通常把电光材料的折射率正比于外加电场强度的电光效应称为线性电光效应,或Pockels效应。具有电光效应的磷酸二氢钾和铌酸锂等电光晶体在光电子技术领域有着广泛应用,如制成电光调制器[1-2]、电光开关[3-5]、电光逻辑器[6]、可调滤波器[7]和量子器件[8]等性能优异的光电器件,另外还可用于测量强电场[9-10]以及高电压[11-12]等电学参量。特别是随着新型电力系统的发展,要求输电容量、传输电压和电流越来越大,以及智能化越来越高,传统电压互感器已不能满足。而利用电光效应制成的新型光学电压互感器[13-15]具有体积小、集成度高、抗电磁干扰、绝缘性好和动态范围大等优点,解决了传统电压互感器存在的容易燃烧爆炸、绝缘性能差和频带窄等问题,在电力系统的过电压测量与在线监测中有着重要的应用。目前报道的光学电压互感器基本上只用于测量电压值的大小[11-16],几乎没有对电压的方向进行测量。然而,通过电压值及其方向才能全面准确反映电压变化。因此,作为一个重要的电压特性参量,电压方向也需要测量。为实现光学电压互感器测量电压的方向,本文作者研究了利用Pockels电光效应对电压方向进行测量的原理,并进行了实验测试。

    考虑电光材料为磷酸二氢钾(KH2PO4, KDP)晶体,其折射率与晶体的空间坐标xyz轴方向有关,x轴和y轴方向的主折射率都为noz轴方向的主折射率为ne,其线性电光系数γij矩阵可用下式表示[17-18]:

    [γij]=[000000000γ41000γ52000γ63] (1)

    式中:i=1, …, 6;j=1, 2, 3。这类晶体的电光张量元素只有γ41γ52、和γ63不为零,其余元素都为零。

    无外电场作用时,晶体折射率在空间各个方向的取值分布可用以z轴为对称轴的椭球方程表示为:

    x2no2+y2no2+z2ne2=1 (2)

    若电场沿晶体的z轴方向施加,则z轴方向的电场强度大小为Ezxy轴方向的电场强度都为零。根据Pockels电光效应[17],这时折射率椭球方程变为:

    (1no2+γ63Ez)x2+(1no2γ63Ez)y2+1ne2z2=1 (3)

    式中: x′、y′、z′为感应主轴坐标系。

    考虑入射线偏振光沿z轴方向传播,其光矢量Ep的振动方向沿晶体的x轴方向,如图 1所示。

    图 1 Pockels电光效应原理图
    图  1  Pockels电光效应原理图
    Figure  1.  Schematic diagram of Pockels electro-optic effect

    z′=0,式(3)变为:

    (1n02+γ63Ez)x2+(1n02γ63Ez)y2=1 (4)

    由式(4)可得电光晶体在感应主轴x′和y′方向的折射率分别为:

    nx=no12no3γ63Ez (5)
    ny=no+12no3γ63Ez (6)

    入射线偏振光进入晶体后, 其光矢量Ep沿x′和y′方向分解为两个垂直的偏振分量Ep, xEp, y,其中Ep, x=A1cos(ωt),Ep, y=A2cos(ωt),A1A2分别为光矢量在x′和y′方向的振幅,ω为光矢量振动频率,t为传播时间。经过晶体长度为L的光程分别为nxLnyL,则相应的相位延迟分别为:

    \varphi_{x^{\prime}}=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{x^{\prime}} L=\frac{2 {\rm{ \mathsf{ π}}} L}{\lambda}\left(n_o-\frac{1}{2} n_o{ }^3 \gamma_{63} E_z\right) (7)
    \varphi_{y^{\prime}}=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{y^{\prime}} L=\frac{2 {\rm{ \mathsf{ π}}} L}{\lambda}\left(n_o+\frac{1}{2} n_{\mathrm{o}}{ }^3 \gamma_{63} E_z\right) (8)

    式中:λ为入射光的波长。Ep, xEp, y通过电光晶体后会产生一个相位差:

    \Delta \varphi=\varphi_{y^{\prime}}-\varphi_{x^{\prime}}=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{\mathrm{o}}{ }^3 \gamma_{63} E_z L=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{\mathrm{o}}{ }^3 \gamma_{63} U (9)

    式中:U=EzL是沿z轴方向施加的电压。式(9)说明由于两个偏振分量Ep, xEp, y之间存在相位延迟,将会改变透射光束的偏振态。由偏振光理论可知,在一般情况下,这时通过晶体后的两偏振分量合成为一束椭圆偏振光,合成振动公式表示为[17-18]

    \frac{E_{\mathrm{p}, x^{\prime}}{ }^2}{A_1{ }^2}+\frac{E_{\mathrm{p}, y^{\prime}}{ }^2}{A_2{ }^2}-\frac{2 E_{\mathrm{p}, x^{\prime}} E_{\mathrm{p}, y^{\prime}}}{A_1 A_2} \cos (\Delta \varphi)=\sin ^2(\Delta \varphi) (10)

    若施加的电压U方向沿光传播方向,且U值在(0,Vπ)范围,Vπ是电光晶体的半波电压,根据式(9)和式(10)可得相应相位差Δφ的值在(0,π),上述通过电光晶体合成的椭圆偏振光表现为右旋;同理,若U方向与光传播方向相反,相应的Δφ为(-π,0),合成的椭圆偏振光则表现为左旋[18-19]

    由上述分析可知,通过电光晶体的光偏振态取决于施加的电压方向。下一步需要确定椭圆偏振光的光矢量的旋转轨迹,可把λ/4波片置于椭圆偏振光传播前面,如图 2所示。调节λ/4波片的快轴与椭圆偏振光的长轴方向一致,慢轴则和短轴方向一致,使椭圆偏振光的长短轴产生一个π/2的附加相位。右旋椭圆偏振光的长短轴方向的相位差Δφ1=π/2,透过λ/4波片后的相位差变成Δφφ1+π/2=π,根据式(10)可知,右旋椭圆偏振光变换为线偏振光,其偏振方向在空间坐标的二、四象限;同理,对于左旋椭圆偏振光,其长短轴方向的相位差Δφ2=-π/2,透过λ/4波片后的相位差变成Δφφ2+π/2=0,变换为线偏振光[18, 20],其偏振方向在一、三象限。因此,可以通过测量电光晶体的透射椭圆偏振光的光矢量旋转方向,然后根据偏振光合成理论和电光效应判断出外加电压的方向,实现利用电光效应测量电压的方向。

    图 2 判断椭圆偏振光旋转方向的原理图
    图  2  判断椭圆偏振光旋转方向的原理图
    Figure  2.  Schematic diagram of judging the rotation direction of elliptically polarized light

    根据上述理论分析,采用信息光电子综合实验仪(CA9005)搭建电压方向测量装置,如图 3所示。半导体激光器发射波长为635 nm的激光沿电光晶体的z轴方向传播,依次通过起偏器、电光晶体、检偏器和光探测器,另外在实验过程中还需加入λ/4波片,各光学元件调至等高共轴。沿电光晶体的z轴方向施加一定大小的电压U。电光晶体无电压作用时,从起偏器透射的光通过电光晶体后其偏振方向保持不变,由于检偏器与起偏器正交,无光输出,测量光强为零。

    图 3 利用电光效应测量电压方向的示意图
    图  3  利用电光效应测量电压方向的示意图
    Figure  3.  Experimental device of measuring voltage direction based on electro-optic effect

    设置施加的电压U=100 V,且电压方向沿光传播方向,即在图 3中电压方向表现为从左指向右(左正右负),这时检偏器有光输出。以z轴为中心旋转检偏器角度,每旋转10°用探测器测量对应的光功率,旋转一周,得到通过电光晶体的透射光的归一化功率随x-y坐标平面空间角度不同的分布,如图 4所示。迎着光观测,图 4中透射光在空间不同角度的功率大小分布呈现出椭圆形状,说明其光矢量的大小和方向都发生改变,功率在空间位置约20°出现最大值,归一化功率接近1,最小值则在空间位置约110°时为0.65,末端轨迹表现为椭圆。因此,透射光是椭圆偏振光,其长轴位于空间角度20°处,短轴位于空间角度110°处。

    图 4 电压方向指向右时光通过电光晶体的功率分布
    图  4  电压方向指向右时光通过电光晶体的功率分布
    Figure  4.  Intensity distribution of light through electro-optic crystal for the voltage to the right

    为进一步判断图 4中椭圆偏振光的光矢量旋转方向是右旋还是左旋,在图 3中的电光晶体和检偏器之间加入λ/4波片,并且调节λ/4波片的快轴与椭圆偏振光的长轴方向相同,其慢轴则与短轴方向一致,类似上述操作方法旋转检偏器测量光功率,得到透射椭圆偏振光透过λ/4波片后的归一化功率随x-y坐标平面空间角度不同的分布,如图 5所示。迎着光观测,图 5中的功率分布呈现出“8”字形状,在空间100°处达到一个最大值,归一化功率为1;在空间190°处存在一个最小值,归一化功率为0.24,接近于零,相当于消光。另外,这两个角度相差90°。这是典型的线偏振光通过检偏器的光强变化[21]。说明从电光晶体透射的椭圆偏振光再通过λ/4波片后变换成线偏振光,而且线偏振光的偏振方向位于x-y坐标二、四象限。根据前面的理论分析可知,此时通过电光晶体的椭圆偏振光表现为右旋,施加的电压方向与光传播方向相同,实验与理论相符。

    图 5 电压方向指向右时椭圆偏振光通过λ/4波片的功率分布
    图  5  电压方向指向右时椭圆偏振光通过λ/4波片的功率分布
    Figure  5.  Intensity distribution of elliptically polarized light through λ/4 wave-plate for the voltage to the right

    参考上述实验方法,改变施加电压U的方向,使其与光传播方向相反,即在图 3中电压方向表现为从右指向左(左负右正),测量得到通过电光晶体的透射光的归一化功率随x-y坐标平面空间角度不同的分布,如图 6所示。与图 4结果类似,透射光是椭圆偏振光,但其长短轴方向不一样,长轴位于空间角度约130°,短轴位于空间角度约40°。加入λ/4波片后,测得透射椭圆偏振光通过λ/4波片后的归一化功率随x-y坐标平面空间角度不同的分布,如图 7所示。同样与图 4结果类似,功率分布呈现“8”字形状,功率最大值出现在空间位置约34°,最小值则在约124°。说明通过λ/4波片后光为线偏振光,其偏振方向位于x-y坐标一、三象限,相应的椭圆偏振光是左旋,施加的电压方向与光传播方向相反。这进一步验证了利用Pockels电光效应测量电压方向的方法是有效的。

    图 6 电压方向指向左时光通过电光晶体的功率分布
    图  6  电压方向指向左时光通过电光晶体的功率分布
    Figure  6.  Intensity distribution of light through electro-optic crystal for the voltage to the left
    图 7 电压方向指向左时椭圆偏振光通过λ/4波片的功率分布
    图  7  电压方向指向左时椭圆偏振光通过λ/4波片的功率分布
    Figure  7.  Intensity distribution of elliptically polarized light through λ/4 wave-plate for the voltage to the left

    限于仪器条件和安全考虑,作者缺少更高电压的方向测量实验。然而由式(9)和式(10)可知,当光源和电光晶体确定后,电光效应导致的光偏振分量的相位差Δφ与外加电压U成单值函数,即相位差大小取决于外加电压,U越大,Δφ越大。只要施加的电压不高于半波电压,Δφ的取值仍在(0,π)或(-π,0)之间,相应电光效应的透射光偏振态变化能被上述方法测出。其中半波电压是电光晶体的一个重要参数,由入射光波长和电光晶体本身决定[17-18],通常可达千伏以上。由此推断: 采用上述方法测量更高电压的方向也是可行的, 适用于新型的光学电压互感器。

    本文作者结合偏振光理论和不同方向电压作用下的电致旋光特性,提出了一种利用Pockels电光效应测量电压方向的方法,并进行了实验测量。实验结果与理论相符,表明可以通过测量沿一定方向的施加电压作用下,光从电光晶体透射的偏振态变化,然后根据光偏振态与电压方向的关系确定施加电压的方向。迎着光观测,当透射的椭圆偏振光表现为右旋时,施加电压的方向沿光传播方向;当透射的椭圆偏振光表现为左旋时,电压方向则与光传播方向相反。这一工作有助于进一步理解电光效应中施加电压方向、光传播方向和光的偏振态三者之间的相互关系,对设计既能测量电压大小、又能判断其方向的光学电压互感器提供一定的指导作用,在光电子器件中具有重要的应用价值。

  • 图  1   西宁曹家堡国际机场地理环境及探测设备分布图

    a—西宁机场及其周边地形   b—西宁机场探测设备分布   c—FC-Ⅲ型激光雷达

    Figure  1.   Geographical environment and detection equipment distribution map of Xining Caojiapu International Airport

    a—Xining Airport and its surrounding terrain   b—the distribution of detection equipment in Xining Airport   c—FC-Ⅲ LiDAR

    图  2   不同时刻FY-2G卫星相当黑体亮温图

    Figure  2.   TBB of FY-2G satellite at different times

    图  3   下击暴流照片及对飞机降落的影响

    Figure  3.   Photo of downburst and schematic diagram of impact on flight (from the Internet)

    图  4   a—下击暴流概念示意图   b—1983-08-01 Andrews暴雨的风速和风向的记录[33]   c—1982-08-05美国科罗拉多州发生的两个微暴引发的辐散风场[34]

    Figure  4.   a—downburst schematic   b—recorded of wind for Andrews downburst on 1983-08-01[33]   c—divergent wind fields caused by two microburst occurred on 1982-08-05 in Colorado, USA[34]

    图  5   2006-07-25山东省济南市多普勒天气雷达PPI探测的下击暴流个例[35]

    Figure  5.   A case of downburst detected by Doppler weather radar of PPI mode in Ji'nan City, Shandong Province on 2006-07-25[35]

    图  6   西宁机场11#和29#自动气象观测站气象要素时间序列图

    Figure  6.   Time series of meteorological elements of ZLXN at 11# and 29# automatic weather station

    图  7   2021-05-18雷暴下击暴流风切变期间激光雷达DBS模式探测到的水平风廓线和垂直气流

    Figure  7.   Wind profile and vertical airflow detected by LiDAR DBS mode during downburst on 2021-05-18

    图  8   2021-05-18雷暴下击暴流风切变期间西宁机场风廓线雷达探测到的水平风廓线和垂直气流

    Figure  8.   Wind profile and vertical airflow detected by wind profile radar of ZLXN during downburst on 2021-05-18

    图  9   2021-05-18T19:20—19:33测风激光雷达3°仰角PPI模式探测填色图

    Figure  9.   Color filling diagram detected by PPI mode with 3° elevation of wind LiDAR on 2021-05-18T19:20—19:33

    图  10   2021-05-18T19:41—19:47测风激光雷达3°仰角PPI模式探测填色图

    Figure  10.   Color filling diagram detected by PPI mode with 3° elevation of wind LiDAR on 2021-05-18T19:41—19:47

    图  11   2021-05-18T20:01—20:06测风激光雷达3°和6°仰角PPI模式探测的水平风场和径向速度图

    Figure  11.   Horizontal wind vector and radial velocity detected by 3° and 6° elevation PPI mode of wind LiDAR at 2021-05-18T20:01—20:06

    图  12   2021-05-18T19:25—20:06测风激光雷达110°~290°方向RHI模式径向速度垂直剖面图

    Figure  12.   Vertical cross-section profile of radial velocity from wind LiDAR RHI mode in the 110°~290° direction at 2021-05-18T19:25—20:06

    表  1   FC-Ⅲ型激光雷达的参数

    Table  1   Main parameters of FC-Ⅲ LiDAR

    parameters value
    average power ≤200 W
    wavelength 1.55 μm
    scan range(azimuth/pitch) 0°~360°/0°~90°
    detection range 10 km
    range resolution 50 m/75 m/100 m
    scanning mode DBS/PPI/RHI/GP
    angle resolution ≤0.1°
    wind speed range -60 m/s~+60 m/s
    wind velocity accuracy ≤0.5 m/s
    products radial velocity, vertical speed, spectrum width, etc.
    下载: 导出CSV
  • [1] 左金辉, 贾豫东. 多普勒激光雷达风场反演研究进展[J]. 激光与红外, 2021, 51(1): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202101002.htm

    ZUO J H, JIA Y D. Research progress in wind field inversion of Doppler lidar[J]. Laser & Infrared, 2021, 51(1): 3-8(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202101002.htm

    [2] 范琪, 朱晓林, 周鼎富, 等. 激光测风雷达分析典型高原机场风场特征[J]. 激光技术, 2020, 44(5): 525-531. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001

    FAN Q, ZHU X L, ZHOU D F, et al. Analysis of the wind field characteristics using the wind LiDAR in a typicalplateau airport[J]. Laser Technology, 2020, 44(5): 525-531(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001

    [3]

    LIU Z, BARLOW J F, CHAN P W, et al. A review of progress and applications of pulsed Doppler wind LiDARs[J]. Remote Sensing, 2019, 11(21): 2522. DOI: 10.3390/rs11212522

    [4]

    INTERNATIONAL CIVIL AVIATION ORGANIZATION. Manual on low-level wind shear[M]. Ottawa, Canada: International Civil Aviation Organization, 2005: 5-27.

    [5]

    SHUN C M. Ongoing research in Hong Kong has led to improved wind shear and turbulence alerts[J]. ICAO Journal, 2003, 58(2): 4-6.

    [6]

    MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. DOI: 10.1038/187493a0

    [7]

    YEH Y, CUMMINS H Z. Localized fluid flow measurements with an He-Ne laser spectrometer[J]. Applied Physics Letters, 1964, 4(10): 176-178. DOI: 10.1063/1.1753925

    [8]

    KARLSSON C J, OLSSON F Å A, LETALICK D, et al. All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements[J]. Applied Optics, 2000, 39(21): 3716-3726. DOI: 10.1364/AO.39.003716

    [9]

    OUDE NIJHUIS A C P, THOBOIS L P, BARBARESCO F, et al. Wind hazard and turbulence monitoring at airports with LiDAR, radar, and mode-S downlinks: The UFO project[J]. Bulletin of the American Meteorological Society, 2018, 99(11): 2275-2293. DOI: 10.1175/BAMS-D-15-00295.1

    [10]

    LOAEC S, THOBOIS L, CARIOU J P, et al. Monitoring wake vortices with a scanning Doppler LIDAR[C]//Proceedings of the 9th International Symposium on Tropospheric Profiling(ISTP). L'Aquila, Italy: ISTP, 2012: 4.

    [11] 潘静岩, 邬双阳, 刘果, 等. 相干激光雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724. DOI: 10.3969/j.issn.1007-2276.2013.07.013

    PAN J Y, WU Sh Y, LIU G, et al. Wind measurement techniques of coherent wind LiDAR[J]. Infrared and Laser Engineering, 2013, 42(7): 1720-1724(in Chinese). DOI: 10.3969/j.issn.1007-2276.2013.07.013

    [12] 冯力天, 郭弘其, 陈涌, 等. 1.55 μm全光纤多普勒测风雷达系统与试验[J]. 红外与激光工程, 2011, 40(5): 844-847. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201105016.htm

    FENG L T, GUO H Q, CHEN Y, et al. Experiment of all fiber Doppler LiDAR at 1.55 μm[J]. Infrared and Laser Engineering, 2011, 40(5): 844-847(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201105016.htm

    [13] 代冰冰, 何敏, 杨靖新, 等. 利用激光雷达判别机场晴空风切变事件成因[J]. 气象科技, 2021, 49(4): 589-596. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202104011.htm

    DAI B B, HE M, YANG J X, et al. Causal analysis of a clear sky wind shear event at a plateau airport in Southwest China using LiDAR data[J]. Meteorological Science and Technology, 2021, 49(4): 589-596(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202104011.htm

    [14] 华志强, 黎倩, 黄轩, 等. 激光测风雷达在航空保障中的典型应用分析[J]. 激光技术, 2020, 44(5): 600-604. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012

    HUA Zh Q, LI Q, HUANG X, et al. Analysis of the typical application of laser wind measurement radar in aviation support[J]. Laser Technology, 2020, 44(5): 600-604 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012

    [15] 梁希豪, 杨寅, 冯亮, 等. 基于激光测风雷达银川机场动量下传大风特征研究[J]. 激光技术, 2023, 47(3): 432-438. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.023

    LIANG X H, YANG Y, FENG L, et al. Research on the characteristics of momentum downward gale in Yinchuan Airport based on wind LiDAR[J]. Laser Technology, 2023, 47(3): 432-438 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.03.023

    [16]

    CHAN P W, SHUN C M, WU K C. Operational LiDAR-based system for automatic windshear alerting at the Hong Kong International Airport[C]//12th Conference on Aviation, Range, and Aerospace Meteorology, American Meteorological Society. Atlanta, GA, USA: Technical Association of the Pulp and Paper Industry Press, 2006: 6.

    [17]

    CHAN P W, SHAO A M. Depiction of complex airflow near Hong Kong International Airport using a Doppler LiDAR with a two-dimensional wind retrieval technique[J]. Meteorologische Zeitschrift, 2007, 16(5): 491-504. DOI: 10.1127/0941-2948/2007/0220

    [18]

    CHAN P W, HON K K, SHIN D K. Combined use of headwind ramps and gradients based on LiDAR data in the alerting of low-level windshear/turbulence[J]. Meteorologische Zeitschrift, 2011, 20(6): 661-670. DOI: 10.1127/0941-2948/2011/0242

    [19]

    SHUN C M, CHAN P W. Applications of an infrared Doppler LiDAR in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637-655. DOI: 10.1175/2007JTECHA1057.1

    [20]

    YOSHINO K. Low-level wind shear induced by horizontal roll vortices at Narita International Airport, Japan[J]. Journal of the Meteo-rological Society of Japan, 2019, 97(2): 403-421.

    [21]

    HAN Y, LIU J, SUN D, et al. Fine gust front structure observed by coherent Doppler LiDAR at Lanzhou Airport (103° 49' E, 36° 03' N)[J]. Applied Optics, 2020, 59(9): 2686-2694. DOI: 10.1364/AO.384634

    [22]

    ZHANG H, WU S, WANG Q, et al. Airport low-level wind shear LiDAR observation at Beijing Capital International Airport[J]. Infrared Physics & Technology, 2019, 96(2): 113-122.

    [23] 刘晓英, 吴松华, 张洪玮, 等. 基于相干多普勒测风激光雷达的不同成因类型的低空风切变观测[J]. 红外与毫米波学报, 2020, 39(4): 491-504. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202004014.htm

    LIU X Y, WU S H, ZHANG H W, et al. Low-level wind shear observation based on different physical mechanismsby coherent Doppler LiDAR[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 491-504 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202004014.htm

    [24] 颜玉倩, 田维东, 李金海, 等. 多源数据在高原机场一次低空风切变过程分析中的综合应用[J]. 高原气象, 2020, 39(6): 1329-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202006017.htm

    YAN Y Q, TIAN W D, LI J H, et al. Comprehensive application of multi-source data in the analysis of a lowlevel wind shear process over plateau airport[J]. Plateau Meteorology, 2020, 39(6): 1329-1338 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202006017.htm

    [25] 黄轩, 郑佳锋, 张杰, 等. 西宁机场一次低空风切变的结构和特征研究[J]. 激光技术, 2022, 46(2): 206-212. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010

    HUANG X, ZHENG J F, ZHANG J, et al. Study on the structure and characteristic of a low-level wind shearprocess that happened over Xining Airport[J]. Laser Technology, 2022, 46(2): 206-212 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010

    [26] 张涛, 黎倩, 郑佳锋, 等. 激光测风雷达研究微下击暴流引发的低空风切变[J]. 激光技术, 2020, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007

    ZHANG T, LI Q, ZHENG J F, et al. A study on low-level wind shear caused by microburst using LiDAR and other data[J]. Laser Technology, 2020, 44(5): 563-569(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007

    [27] 冯力天, 周杰, 范琪, 等. 应用于民航机场风切变探测与预警的三维激光测风雷达[J]. 光子学报, 2019, 48(5): 0512001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905022.htm

    FENG L, ZHOU J, FAN Q, et al. Three-dimensional LiDAR for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5): 0512001 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905022.htm

    [28]

    FUJITA T T. Downbursts: Meteorological features and wind field characteristics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(1/3): 75-86.

    [29]

    WAKIMOTO R M. Forecasting dry microburst activity over the high plains[J]. Monthly Weather Review, 1985, 113(7): 1131-1143. DOI: 10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2

    [30]

    WILSON J W, ROBERTS R D, KESSINGER C, et al. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection[J]. Journal of Applied Meteorology and Climatology, 1984, 23(6): 898-915. DOI: 10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2

    [31]

    McCARTHY J, SERAFIN R. The microburst hazard to aircraft[J]. Weatherwise, 1984, 37(3): 120-127. DOI: 10.1080/00431672.1984.9933539

    [32] 郑永光, 田付友, 孟智勇, 等. "东方之星"客轮翻沉事件周边区域风灾现场调查与多尺度特征分析[J]. 气象, 2016, 42(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601001.htm

    ZHENG Y G, TIAN F Y, MENG Zh Y, et al. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship "Dongfangzhixing"[J]. Meteorological Monthly, 2016, 42(1): 1-13 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601001.htm

    [33]

    FUJITA T T. The downburst, report of projects NIMROD and JAWS[J]. University of Chicago, 1985, 210(20): 112-122.

    [34]

    HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology and Climatology, 1988, 27(8): 900-927. DOI: 10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2

    [35]

    WANG X, WANG H, HE J, et al. Automated recognition of macro downburst using Doppler weather radar[J]. Atmosphere, 2022, 13(5): 672-691.

    [36]

    HJELMFELT M R, JOHNSON E A, MIYANISHI K. Microbursts and macrobursts: Windstorms and blowdowns[M]. Burlington, USA: Elsevier, Academic Press, 2010: 59-95.

    [37]

    STICH D, FORSTER C, TAFFERNER A, et al. Information on thunderstorm initiation, nowcast, and forecast for aviation safety and efficiency[C]//Programme 1st Ecats Conference. Berlin, Germany: Deutsches Zentrum fur Luft-und Raumfahrt, 2013: 11.

    [38]

    IWAI H, MURAYAMA Y, ISHII S, et al. Strong updraft at a sea-breeze front and associated vertical transport of near-surface dense aerosol observed by Doppler LiDAR and ceilometer[J]. Boundary-Layer Meteorology, 2011, 141(1): 117-142.

  • 期刊类型引用(1)

    1. 张艳,马春明,刘树东,孙叶美. 基于多尺度特征增强的高效Transformer语义分割网络. 光电工程. 2024(12): 87-102 . 百度学术

    其他类型引用(0)

图(12)  /  表(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-03
  • 修回日期:  2023-07-23
  • 发布日期:  2024-05-24

目录

/

返回文章
返回