高级检索

基于调制激光光谱吸收的高稳定性气体检测

康虎, 张夏, 郑世杰, 邵犁, 冯国英

康虎, 张夏, 郑世杰, 邵犁, 冯国英. 基于调制激光光谱吸收的高稳定性气体检测[J]. 激光技术, 2024, 48(2): 145-152. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.001
引用本文: 康虎, 张夏, 郑世杰, 邵犁, 冯国英. 基于调制激光光谱吸收的高稳定性气体检测[J]. 激光技术, 2024, 48(2): 145-152. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.001
KANG Hu, ZHANG Xia, ZHENG Shijie, SHAO Li, FENG Guoying. High-stability gas detection based on modulated laser spectral absorption[J]. LASER TECHNOLOGY, 2024, 48(2): 145-152. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.001
Citation: KANG Hu, ZHANG Xia, ZHENG Shijie, SHAO Li, FENG Guoying. High-stability gas detection based on modulated laser spectral absorption[J]. LASER TECHNOLOGY, 2024, 48(2): 145-152. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.001

基于调制激光光谱吸收的高稳定性气体检测

基金项目: 

国家自然科学基金资助项目 U2230129

成都市国际科技合作项目 2022-GH02-00017-HZ

国家重点研发计划资助项目 2022YFB3606304

详细信息
    通讯作者:

    冯国英, guoing_feng@scu.edu.cn

  • 中图分类号: O433.5+1;TN249

High-stability gas detection based on modulated laser spectral absorption

  • 摘要: 为了精确测定待测气体的体积分数,提高可调谐二极管激光吸收光谱(TDLAS)的稳定性,优化了TDLAS气体检测系统的扫描信号。基于HITRAN数据库,选定了甲烷气体在1654 nm附近吸收峰,计算出含甲烷、水蒸气和二氧化碳混合气体的吸收系数;使用可视化仿真工具对气体检测系统进行理论仿真,同时通过搭建的气体检测系统验证仿真结果。结果表明,通过优化扫描信号,提高了检测系统的稳定性,偏差值从0.3%降至0.07%;建立了2次谐波信号均值与气体体积分数的反演模型,线性拟合的相关系数R2=99.99%。此研究为提升TDLAS系统的稳定性和准确性,及实现高稳定气体检测具有一定的参考价值。
    Abstract: In order to accurately determine the volume fraction of the gas to be measured and to improve the stability of tunable diode laser absorption spectroscopy (TDLAS), the scan signal of the TDLAS gas detection system was optimized. Based on the HITRAN database, the absorption peak of methane gas near 1654 nm was selected, and the absorption coefficients of the gas mixture containing methane, water vapor and carbon dioxide were calculated; a visual simulation tool was used to simulate the gas detection system theoretically, and the simulation results were verified by the gas detection system. The results show that the stability of the detection system is improved by optimizing the scanning signal, and the deviation value is reduced from 0.3% to 0.07%; the inverse model of the mean value of the second harmonic signal and the volume fraction of the gas is established, and the correlation coefficient of the linear fit R2=99.99%. This study has a certain reference value for improving the stability and accuracy of the TDLAS system and achieving high stability gas detection.
  • 图  1   甲烷、二氧化碳和水蒸气的吸收线强度

    Figure  1.   Absorption line intensity of methane, carbon dioxide and water vapor

    图  2   常温常压下甲烷、水蒸气、二氧化碳混合气体的吸收系数

    Figure  2.   Absorption coefficient of a mixture of methane, water vapor and carbon dioxide at atmospheric temperature and pressure

    图  3   TDLAS的仿真结果

    Figure  3.   Simulated results for TDLAS

    图  4   TDLAS扫描信号

    Figure  4.   Scan signal of TDLAS

    图  5   添加噪声的2次谐波信号

    Figure  5.   Second harmonic signals of TDLAS with noises

    图  6   系统稳定性

    Figure  6.   Stability of system

    图  7   体积分数反演仿真结果

    Figure  7.   Simulation results of volume fraction inversion.

    图  8   甲烷气检测系统示意图

    Figure  8.   Schematic diagram of methane gas detection system

    图  9   体积分数反演实验结果

    Figure  9.   Experimental results of volume fraction inversion

    图  10   不同调制频率下2次谐波的线型和强度

    Figure  10.   Line shape and intensity of the second harmonic at different modulation frequencies

    图  11   不同扫描频率下2次谐波的强度、归一化对称性和峰宽

    Figure  11.   Intensity, the normalized symmetry and peak width of the second harmonic at different scan frequencies

  • [1]

    RIGHETTONI M, AMANN A, PRATSINIS S E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors[J]. Materials Today, 2015, 18(3): 163-171. DOI: 10.1016/j.mattod.2014.08.017

    [2]

    SELVARAJ R, VASA N J, NAGENDRA S M S, et al. Advances in mid-infrared spectroscopy-based sensing techniques for exhaled breath diagnostics[J]. Molecules, 2020, 25(9): 2227. DOI: 10.3390/molecules25092227

    [3]

    PAULING L, ROBINSON A B, TERANISH R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(10): 2374-2376.

    [4]

    FLOSS M A, FINK T, MAURER F, et al. Exhaled aldehydes as biomarkers for lung diseases: A narrative review[J]. Molecules, 2022, 27(16): 5258. DOI: 10.3390/molecules27165258

    [5]

    DUMITRAS D C, PETRUS M, BRATU A M, et al. Applications of near infrared photoacoustic spectroscopy for analysis of human respiration: A review[J]. Molecules, 2020, 25(7): 1728. DOI: 10.3390/molecules25071728

    [6]

    YANG D, GOPAL R A, LKHAGVAA T, et al. Metal-oxide gas sensors for exhaled-breath analysis: A review[J]. Measurement Science and Technology, 2021, 32 (10): 102004. DOI: 10.1088/1361-6501/ac03e3

    [7]

    ZHOU X Y, XUE ZH J, CHEN X Y, et al. Nanomaterial-based gas sensors used for breath diagnosis[J]. Journal of Materials Chemistry, 2020, B8(16): 3231-3248.

    [8]

    NARASIMHAN L R, GOODMAN W, PATEL C K N. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98 (8): 4617-4621.

    [9] 王鑫, 荆聪蕊, 侯凯旋, 等. 基于TDLAS技术的人体呼气末CO2在线检测[J]. 中国激光, 2020, 47(3): 0311002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202003039.htm

    WANG X, JING C R, HOU K X, et al. Online detection of human-exhaled end-tidal carbon dioxide using tunable semiconductor absorption spectroscopy[J]. Chinese Journal of Lasers, 2020, 47(3): 0311002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202003039.htm

    [10]

    WINKOWSKI M, STACEWICZ T. Detection of ethane, methane, formaldehyde and water vapor in the 3.33 μm range[J]. Metrology and Measurement Systems, 2022, 29(2): 271-282.

    [11] 吕文静, 李红莲, 李文铎, 等. TDLAS技术调制参量的优化及实验研究[J]. 激光技术, 2021, 45(3): 336-343. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202103013.htm

    LÜ W J, LI H L, LI W D, et al. Optimization and experimental research on modulation parameters of TDLAS technology[J]. Laser Technology, 2021, 45(3): 336-343(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202103013.htm

    [12]

    ALORIFI F, GHALY S M A, SHALABY M Y, et al. Analysis and detection of a target gas system based on TDLAS & LabVIEW[J]. Engineering Technology & Applied Science Research, 2019, 9(3): 4196-4199.

    [13]

    LIANG W K, WEI G F, HE A X, et al. A novel wavelength modulation spectroscopy in TDLAS[J]. Infrared Physics & Technology, 2021, 114: 103661.

    [14]

    WANG Zh M, CHANG T Y, ZENG X B, et al. Fiber optic multipoint remote methane sensing system based on pseudo differential detection[J]. Optics and Lasers in Engineering, 2019, 114: 50-59. DOI: 10.1016/j.optlaseng.2018.10.013

    [15]

    DENG B T, SIMA CH T, XIAO Y F, et al. Modified laser scanning technique in wavelength modulation spectroscopy for advanced TDLAS gas sensing[J]. Optics and Lasers in Engineering, 2022, 151: 106906. DOI: 10.1016/j.optlaseng.2021.106906

    [16] 孙利群, 邹明丽, 王旋. 可调谐半导体激光吸收光谱法在呼吸诊断中的应用[J]. 中国激光, 2021, 48(15): 1511001. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202115023.htm

    SUN L Q, ZOU M L, WANG X. Application of tunable diode laser absorption spectroscopy in breath diagnosis[J]. Chinese Journal of Lasers, 2021, 48 (15): 1511001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202115023.htm

    [17]

    LIANG W K, DONG X Z, BI Y F, et al. Temperature and pressure dependence of the line shape at λ=763 nm in oxygen concentration detection[J]. Optik, 2019, 176: 236-240. DOI: 10.1016/j.ijleo.2018.09.084

    [18]

    GONG W H, HU J, WANG Zh W, et al. Recent advances in laser gas sensors for applications to safety monitoring in intelligent coal mines[J]. Frontiers in Physics, 2022, 10: 1058475. DOI: 10.3389/fphy.2022.1058475

    [19]

    BAI Y R, YU H J, HE Ch J, et al. A numerical simulation of a near-infrared three-channel trace ammonia detection system using hollow core photonic crystal fiber[J]. Optik, 2021, 227: 166006. DOI: 10.1016/j.ijleo.2020.166006

    [20] 宫学程, 高一凡, 杨军, 等. TDLAS波长调制压力测量法参数优化[J]. 光学技术, 2020, 46(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202002002.htm

    GONG X Ch, GAO Y F, YANG J, et al. Parameter optimization of TDLAS wavelength modulation pressure measurement method[J]. Optical Technique, 2020, 46(2): 134-139(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202002002.htm

    [21]

    WANG B, TANG X J, GAN Y Y, et al. A TC/WMS-TDLAS mid-infrared detection method for ultra-low concentration carbon isotope methane[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(12): 2615-2624. DOI: 10.1039/D2JA00142J

    [22]

    LI J Y, LI L H, ZHAO Sh, et al. Application research of tunable diode laser absorption spectroscopy in petroleum industry[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1300006(in Chinese).

  • 期刊类型引用(0)

    其他类型引用(4)

图(11)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  12
  • PDF下载量:  38
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-02-12
  • 修回日期:  2023-04-16
  • 发布日期:  2024-03-24

目录

    /

    返回文章
    返回