Loading [MathJax]/jax/output/SVG/jax.js
高级检索

一种线结构光平面的标定方法

李忠祥, 周哲海, 陈丽, 赵爽, 李勇

李忠祥, 周哲海, 陈丽, 赵爽, 李勇. 一种线结构光平面的标定方法[J]. 激光技术, 2023, 47(6): 795-802. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.010
引用本文: 李忠祥, 周哲海, 陈丽, 赵爽, 李勇. 一种线结构光平面的标定方法[J]. 激光技术, 2023, 47(6): 795-802. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.010
LI Zhongxiang, ZHOU Zhehai, CHEN Li, ZHAO Shuang, LI Yong. A method for calibrating the light plane of the linear structured light[J]. LASER TECHNOLOGY, 2023, 47(6): 795-802. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.010
Citation: LI Zhongxiang, ZHOU Zhehai, CHEN Li, ZHAO Shuang, LI Yong. A method for calibrating the light plane of the linear structured light[J]. LASER TECHNOLOGY, 2023, 47(6): 795-802. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.010

一种线结构光平面的标定方法

基金项目: 

国家自然科学基金资助项目 61875237

北京市属高校高水平教师队伍建设支持计划长城学者培养计划资助项目 CIT&TCD20190323

北京市优秀人才培养"青年拔尖"项目 Z2019042

详细信息
    作者简介:

    李忠祥(1998-), 男, 硕士研究生, 现主要从事光电与视觉检测方向的研究

    通讯作者:

    周哲海, E-mail: zhouzhehai@bistu.edu.cn

  • 中图分类号: TN247

A method for calibrating the light plane of the linear structured light

  • 摘要: 为了线结构光平面标定的准确性和高效性, 以及提高线结构光平面标定方法的普适性, 提出了一种基于2维圆形标靶的线结构光平面标定方法。采用光条提取算法得到照射在2维圆形标定靶任意位置处光条中心点的亚像素坐标值, 将光条上所有点拟合成直线, 交圆形标定靶每列靶标连线于一点; 得到每列靶标连线与拟合出的光条中心线交点后, 连接交点与相机光学中心形成一条直线; 联立该连线的直线方程与像素坐标系下两条交线的直线方程, 以及2维圆形标定靶所在平面的方程, 求解出每个交点在相机坐标系下的坐标; 最后采用最小二乘拟合算法进行平面拟合, 得到了所求光平面方程; 介绍了该标定方法的基本原理和实现过程, 搭建实验系统对其有效性进行了验证。结果表明, 用该方法求取光平面的平均测量误差可以达到2.36737 mm, 鲁棒性高, 且标定流程十分简便, 适用于一般的工程应用和机械加工过程。该研究为线结构光传感器的光平面标定提供了参考。
    Abstract: In order to improve the accuracy and efficiency of line structure light plane calibration and the universality of the calibration method, a line structure light plane calibration method based on a 2-D circular target was proposed. The subpixel coordinates of the center point of the light strip irradiated at any position of the 2-D circular calibration target were obtained by the light strip extraction algorithm. All the points on the light strip were fitted into a straight line, and the lines connecting each column of the circular calibration target intersected at one point. After obtaining the intersection point of each column of the calibration target line and the fitted light strip center line, a line connecting the intersection point and the camera optical center was formed. By setting up the equation of the line and the equations of two intersecting lines in the pixel coordinate system, and the equation of the plane where the 2-D circular calibration target was located, the coordinates of each intersection point in the camera coordinate system are solved. Finally, the plane fitting algorithm of least squares was used to obtain the equation of the light plane. The basic principle and implementation process of the calibration method was introduced, and the validity of the method was verified by setting up the experimental system. The results show that the average measurement error of the light plane obtained by this method can reach 2.36737 mm, which has high robustness, and the calibration process is very simple and suitable for general engineering applications and machining processes. This study provides a reference for the light plane calibration of line structure light sensors.
  • 食源性疾病是食品安全领域持续关注的重要问题[1]。食品生产加工设备在工作过程中会产生碎屑残留,这些残留不仅会影响后续食品生产的品质而且容易滋生食源性病菌[2]。因此对食品加工、储存器具上的食品残留物进行检测,不仅能够评判清洁程度,更可以防止病菌滋生的潜在风险。目前国内对于食品生产加工场所的卫生检测仍以目视检查为主。目视检查易受环境和检测员疲劳度的干扰,检测效果不稳定;而且对于一些透明或与背景颜色相近的残留物,目视检查难以取得较好的检测效果。荧光成像技术在食品安全检测领域具有很大的发展潜力,许多食品材料都具有荧光发射特性[3-6]。近年来,一些基于荧光成像技术的设备和系统已经被开发并应用于食品安全检查。KANG等人[7]基于食品样品的特征荧光,设计了一种快速筛查食品中多种危害因子的便携式食品安全检测仪。ZHANG[8]基于感染黄曲霉毒素的花生在365 nm紫外光照射下会发出独特的黄绿色荧光特性,设计了一款基于智能手机的黄曲霉毒素快速检测设备。在肉制品粪便污染检测应用中,SEO等人[9]利用多光谱荧光成像技术结合选定波段比(波段比为630 nm/600 nm)图像的主成分分析技术实现了鸡胴体粪便污染的在线检测;BURFOOT等人 [10]开发一种荧光成像设备用于牛羊肉胴体粪便污染检测;GORJI和SUEKER等人[11-12]将荧光成像和深度学习相结合,实现肉类胴体上粪便污染的自动识别。在食品加工场所卫生检测应用中,LEFCOURT等人[13-14]开发了一款便携式高光谱荧光成像系统,以检测加工设备表面肉眼不可见的残渣;LEE等人[15-17]开发了一款手持式荧光成像设备并应用于加工设备表面食品残留检测。但是上述设备在操作的便携性、功能的完善性方面仍有待改进,难以适应复杂环境下的食品残留物检测。

    本文作者研究开发了一套手持式食品残留物荧光成像检测设备,该设备集检测-分析-显示-存储于一身,体积较小方便携带,在成本上更具优势。设备由发光二极管(light-emitting diode, LED)、散热器、超声波测距芯片、红绿蓝(red green blue, RGB)相机、触控屏、现场可编程门阵列(field-programmable gate array, FPGA)、安全数字(secure digital, SD)存储卡、大容量锂电池组成。设备充分利用FPGA实时性高、容量大以及能够进行并行流水线处理的特点[18],在FPGA中实现基于分块阈值的大津算法[19-20](Otsu algorithm, OTSU),提高了设备在不均匀光照下的检测效果。检测人员可以使用该设备识别食品加工设备中肉眼看不见的残留物并可以通过触控屏将当前图片保存在SD存储卡中。

    本文系统装配如图 1所示,包括主控模块、相机模块、激发光源模块、超声波测距模块、触控屏、电源板。设备启动时,打开电源开关,大功率LED激发光源启动照射,检测区域的残留物荧光图像经RGB相机采集后传送到FPGA主控模块中,FPGA根据距离信息对荧光图像进行处理,标记出残留物区域并发送到触控屏中显示,此时检测员可以根据需要选择是否操作触控屏将此时的荧光图像保存至SD存储卡中。

    图 1 手持式食品残留物荧光检测系统装配图
    图  1  手持式食品残留物荧光检测系统装配图
    Figure  1.  Assembly drawing of a hand-held fluorescence detection system for food residues

    图 2所示,所设计的FPGA主控板集成了EP4CE22F17C8主控芯片、50 MHz高精度有源晶振时钟、256 Mbit随机动态存取内存(synchronous dynamic random access memory, SDRAM)、和16 Mbit闪存(flash eeprom memory, FLASH)。根据FPGA现场可编程的优势,所设计的FPGA主控板在FPGA芯片内部实现了串行摄像机控制总线协议(serial camera control bus, SCCB)、数字视频接口(digital video port, DVP)与RGB相机、串行外设接口(serial peripheral interface, SPI)与SD存储卡,以及集成电路总线(inter-integrated circuit, IIC)、视频图形阵列(video graphics array, VGA)与触控屏的通信与数据传输。

    图 2 FPGA主控板
    图  2  FPGA主控板
    Figure  2.  FPGA main control board

    系统运行过程中需要开辟一块内存用来缓存图像处理过程中产生的数据,因此使用256 Mbit SDRAM作为图像检测过程中的缓存存储器。SDRAM存储器硬件电路连接如图 3所示,SDRAM与FPGA相连,由于相机图像输出频率为42 MHz,RGB触控屏显示频率为32 MHz,SDRAM工作频率为133 MHz,因此FPGA在缓存和读取SDRAM过程中需要分别插入两个异步先进先出队列防止数据丢失。此外由于SDRAM工作频率较高,在进行印刷电路板布线时需要进行蛇形等长处理。

    图 3 SDRAM存储器电路
    图  3  SDRAM存储器电路
    Figure  3.  SDRAM memory circuit

    由于FPGA是基于随机存取存储器和查找表结构,掉电时配置信息会丢失,因此选用一片16 Mbit SPI FLASH保存配置数据。所用FLASH型号为W25Q16,该型号可以等效替代相关公司的系列配置器件。电路连接如图 4所示,程序下载时,下载数据经过DATA0口保存在FLASH芯片中,当系统再次上电时FPGA将读取FLASH中保存的用户程序和配置文件完成系统初始化配置。

    图 4 Flash存储器电路
    图  4  Flash存储器电路
    Figure  4.  Flash memory circuit

    SD卡存储电路使用一张大容量SD卡作为外部存储器。SD卡存储电路如图 5所示,SD卡与FPGA采用SPI通信模式,FPGA可以根据指令将当前视频帧保存在SD卡中。

    图 5 SD卡存储电路
    图  5  SD卡存储电路
    Figure  5.  SD card memory circuit

    系统主要用到12 V、5 V、3.3 V、2.5 V、1.2 V直流电源。其中大功率LED光源以及散热风扇由12 V锂电池直接供电,RGB触控屏和FPGA主板电源由12 V锂电池经电压转换芯片MC34063转换为5 V后提供,FPGA主板电源经电压转换芯片AMS1085-3.3转换为3.3 V电压给FPGA芯片供电,并分别经过电压转换芯片AMS1117-2.5和AMS1117-1.2转换为2.5 V和1.2 V电压, 作为联合测试工作组和FPGA内核供电电压。

    激发光源由4颗10 W LED灯珠、恒流电路、铝制散热片、光源基板组成。根据食品残留物的荧光特性,选用中心波长400 nm,波长范围395 nm~405 nm的大功率LED作为激发光源。为保证LED稳定工作,灯珠需要恒定的电流和及时散热。如图 6所示,灯珠按照两并两串方式均匀分布在光源板上,且每颗LED灯珠均搭配相应的铝制散热片,中部镂空放置相机镜头。

    图 6 激发光源
    图  6  激发光源
    Figure  6.  Excitation light source

    选用高灵敏度、低串扰、低噪声、高量子效率OV5640相机采集荧光图像,并按照RGB565格式发送给FPGA。相机镜头选用广角高清M12镜头。镜头底部具有放置滤波片的凹槽,设备可以通过更换凹槽中的滤波片实现对不同荧光特性对象的检测。

    为避免误检测,设备通过超声波测距模块实现检测状态判断。如图 7所示,超声波测距模块采用高性价比超声波测距芯片CS100。

    图 7 超声波测距电路
    图  7  超声波测距电路
    Figure  7.  Ultrasonic ranging circuit

    RGB触控屏采用800×480像素分辨率的电容触摸显示屏。该屏幕集成了电容触摸控制器,该控制器可以通过标准IIC总线接口将多点触摸信号的实时坐标传送给FPGA。

    图 8所示,采用嵌入式逻辑分析仪SingalTap抓取系统运行过程中的时序关系。CMOS_Frame_clken为像素有效信号,CMOS_Vsync、CMOS_Href和COMS_Data分别为相机输出的场信号、行信号和像素数据,当CMOS_Href为高电平,且CMOS_Frame_clken使能时像素数据有效输出;SDRAM_Read和SDRAM_Write分别为SDRAM存储器读写控制信号,当SDRAM_Read或SDRAM_Write为高电平时,FPGA根据读写地址SDRAM_Rrd1_addr或SDRAM_Rwrd1_addr对SDRAM存储器进行读写,读写数据通过双向读写数据通道SDRAM_DQ进行传输,SDRAM_Dqm为2位数据掩码器,SDRAM_Dqm为16进制数0 x 03时, 表示当前传输数据SDRAM_DQ无效,为16进制数0 x 00时, 表示数据有效;LCD_Vs、LCD_Hs和LCD_De分别为显示器场信号、行信号和数据使能信号,当LCD_Vs、LCD_Hs和LCD_De均为高电平时,像素数据LCD_Data有效输出;SDCARD_Init_done信号为高电平表明设备检测到SD存储卡并初始化配置完成;Ultrasonic_Echo为超声波测距模块输出回响信号,其高电平脉冲宽度为超声波往返时间之和,FPGA根据回响信号高电平持续时间计算距离,当回响信号Ultrasonic_Echo产生下降沿时,FPGA内部寄存器Ultrasonic_distance更新距离信息(单位为mm)。

    图 8 板级硬件测试信号
    图  8  板级硬件测试信号
    Figure  8.  Board level hardware test signal

    由硬件测试信号可知,硬件系统图像采集功能正常、SDRAM存储器读写正常、RGB显示器工作正常、SD卡初始化完成、超声波模块测距正常,系统硬件电路设计达到设计要求。

    系统工作流程如图 9所示。设备启动时,大功率LED灯打开同时散热风扇开始工作,FPGA开始初始化配置并将掩模寄存器初始值清零;FPGA初始化完成后开始初始化配置相机寄存器;相机初始化完成后系统开始采集图像信息,为确保图像输出稳定系统丢弃前10帧图像;当设备距离被测物体40 cm以内时, 系统启动图像处理功能,一方面, RGB图像与掩模寄存器中保存的掩模进行融合, 并将带有残留物标记的图像传送到RGB触控屏中,另一方面,RGB图像通过分块大津算法生成新的残留物掩模并更新掩模寄存器; 而当距离超过40 cm时,RGB图像直接显示在RGB触控屏;在RGB屏中可以选择是否将融合后的荧光图像进行保存。

    图 9 系统流程图
    图  9  系统流程图
    Figure  9.  System flow chart

    当FPGA初始化完成后,FPGA需要配置相机的252个寄存器。相机配置状态机如图 10所示,状态机从idle跳转到wrreg_req状态并向IIC控制器发送写命令,IIC控制器开始向相机一个寄存器地址写入命令,写入完成后rw_done置1,状态机跳转为judge状态并判断相机寄存器配置完成个数,当计数器cnt小于252时,状态机跳转回wrreg_req状态继续写命令; 当cnt等于252时,状态机跳转到finish状态,从而完成相机的初始化配置。

    图 10 相机配置状态机
    图  10  相机配置状态机
    Figure  10.  Camera configuration state machine

    相机部分配置参数如表 1所示。其中16进制数0 x 3808~0 x 380 b为图像分辨率寄存器地址范围,0 x 3503为手动曝光寄存器地址,0 x 3500~0 x 3502为曝光时长寄存器地址范围,0 x 4300为格式控制寄存器地址,0 x 501 f为图像输出格式选择寄存器地址。

    表  1  相机主要配置参数
    Table  1.  Main camera configuration parameters
    register name address value
    TIMING DVPHO H 0x3808 0x03
    TIMING DVPHO L 0x3809 0x20
    TIMING DVPVO L 0x380a 0x01
    TIMING DVPVO L 0x380b 0xe0
    AEC PK MANUAL 0x3503 0x03
    AEC PK EXPOSURE 0x3500 0x00
    AEC PK EXPOSURE 0x3501 0x6e
    AEC PK EXPOSURE 0x3502 0x30
    FORMAT CONTROL 0x4300 0x61
    ISP FORMAT 0x501f 0x01
    下载: 导出CSV 
    | 显示表格

    相机接口逻辑主要完成相机RGB565格式输出数据的并行接收,其接收功能主要由10个不同位宽寄存器和2个数据选择器组成。如图 11所示,其中寄存器r_Data、r_Href、r_Vsync分别对输入数据Data、Href、Vsync、进行打一拍操作。H_count对每行像素数据进行计数,当H_count为偶数时将r_Data中8位图像数据保存在r_DataPixel高8位中;H_count为奇数时将r_Data中8位图像数据保存在r_DataPixel低8位中。在完成16位数据接收后,寄存器r_DataValid置1,表明此时r_DataPixel中16位图像数据为正确数据,可以输出到DataPixel口。为确保图像输出稳定,需要舍弃系统开始运行前10帧图像。寄存器FrameCnt对每帧图像进行计数,当FrameCnt计数到第10帧后dump_frame置1,表明此后图像有效。

    图 11 相机接口逻辑设计
    图  11  相机接口逻辑设计
    Figure  11.  Camera interface logic design

    触控屏接口逻辑是将RGB565格式图像数据流转换成VGA模式下的并行数据并发送到触控屏中。如图 12所示,根据触控屏接收时序要求,寄存器Hcount_r和Vcount_r分别产生行同步和场同步信号;Disp_Hs、Disp_Vs和Disp_De根据Hcount_r和Vcount_r产生数据有效信号;寄存器Disp_Red、Disp_Green、Disp_Bule分别将RGB565格式视频数据转换为并行数据。寄存器Frame_begin在场同步信号Disp_Vs上升沿置1,表明开始显示一帧图像。

    图 12 触控屏接口逻辑设计
    图  12  触控屏接口逻辑设计
    Figure  12.  Interface logic design of touch screen

    当完成荧光图像的采集后,需要利用图像分割算法实现残留物的准确分割。由于具有计算简单、不受图像亮度和对比度影响的优点,大津算法在图像分割领域得到广泛引用。然而大津算法是一种全局阈值分割方法, 其在非均匀光照下会产生错误分割,并且当感兴趣目标灰度分布范围较大且部分目标灰度接近背景强度时,接近背景强度的部分目标会检测丢失。针对上述缺点,本文中基于分块大津算法的思想,通过对检测图像的合理分块,避免了背景子块误分割,提高了设备在不均匀光照或目标灰度差异较大情况下的检测能力。分块大津算法流程如图 13所示。首先FPGA从SDRAM缓存中读取荧光图像并经过灰度转换模块转换为灰度图像;然后FPGA按照行同步、场同步信号将一幅灰度图像划分MN列的子块, 并运用大津算法计算每个子块分割阈值和类间平均灰度差;进一步对每个子块的类间平均灰度差进行判断,当子块类间平均灰度差较小时,该子块前景和背景灰度差异不大,判断为背景块,该子块分割阈值复位为0;当子块类间平均灰度差较大时,该子块中存在荧光残留物,保留计算的分割阈值。在系统实际使用中分块大津算法在设备距离被测表面40 cm以内启动,系统根据40 cm以内激发光源光强特点结合FPGA硬件资源占用将图像分为5行8列的子块进行处理,将判断子块是否为纯背景的类间平均灰度差设置为8。

    图 13 荧光残留物提取以及掩膜生成流程图
    图  13  荧光残留物提取以及掩膜生成流程图
    Figure  13.  Flow chart of fluorescence residue extraction and mask generation

    分块大津算法在FPGA中实现如图 14所示。FPGA以数据流形式从SDRAM中读取的荧光图像Rgb_data缺少位置信息;为实现荧光图像准确分块,FPGA在统计模块中对经过的荧光图像数据流进行坐标统计并生成行同步信号Href、列同步信号Vsync和数据有效信号De;16位荧光图像数据经过灰度转换模块转换为8位灰度数据;系统通过调用8个大津算法模块和串行流水线设计方法实现分块大津算法计算。

    图 14 分块大津算法实现
    图  14  分块大津算法实现
    Figure  14.  Implementation of block Otsu algorithm

    分块大津算法中,使用大津算法模块计算每个子块的阈值和类间平均灰度差。如图 14中虚线框中所示,直方图统计模块具有5个输入,4个输出,其中输入Gray_data为8位图像灰度数据。输入Data_end在直方图统计完成后拉高,灰度阈值求完后拉低。输入Data_valid只在灰度直方图统计时为高,其余拉低。输入T为分割阈值, 输入Clr为清零信号,当灰度阈值求完后拉高使直方图统计模块清零复位等待下一次统计。在直方图统计模块中输出表达式[20]为:

    S0=ti=0ni (1)
    S1=255i=t+1ni (2)
    G0=ti=0ini (3)
    G1=255i=t+1ini (4)

    式中,i为灰度值,t为灰度值,ni为灰度值等于i的像素个数,S0为灰度值不大于t的像素个数,S1为灰度值大于t的像素个数,G0为灰度值不大于t的像素灰度总和,G1为灰度值大于t的像素灰度总和。直方图统计模块输出经过后续乘法器、除法器、减法模块计算后得到类间方差,在比较器模块中保存类方间差最大时的阈值T,输出此时阈值以及类间灰度差。

    为了测试本文中所开发系统的适用性,本文作者选用食品加工场所中3种常见包装和加工材质(木制案板、不锈钢板、聚乙烯材质塑料板)进行测试,其中木制案板和不锈钢板不产生荧光,聚乙烯(polyethylene, PE)材质塑料菜板会产生荧光[17]。测试对象为5种不同体积分数的奶粉溶液和菠菜汁液,奶粉溶液采用全脂牛奶粉和纯净水按照不同体积分数(50%、33%、20%、10%、2%)配制;菠菜汁液采用新鲜菠菜榨汁[17]和纯净水按照不同体积分数(50%、33%、25%、20%、10%)配制。由于奶粉在516 nm处存在荧光发射峰[17],菠菜汁在685 nm处存在荧光发射峰[17, 21],因此针对奶粉选用520 nm窄带宽滤波片,针对菠菜汁选用670 nm窄带宽滤波片。

    木制案板表面不同体积分数奶粉溶液和菠菜汁残留物检测效果如图 15所示。其中图 15a图 15e分别是环境光下采集的奶粉残留物和菠菜汁液残留物RGB图像;图 15b图 15f分别为激发光源下采集的奶粉残留物和菠菜汁液残留物荧光图像;图 15c图 15g分别是分块大津算法生成的奶粉残留物和菠菜汁液残留物掩模图像;图 15d图 15h分别是奶粉残留物和菠菜汁液残留物最终检测结果。如图 15a图 15e所示,环境光下,当奶粉、菠菜汁液体积分数分别低于20%和10%时,肉眼几乎不可见木制案板上的残留物;而奶粉残留物、菠菜汁液与木制案板的荧光图像有着明显的区别(见图 15b图 15f), 在图 15f中, 体积分数为50%和33%的菠菜残留物由于存在大量菠菜纤维等固形物导致其荧光强度较弱; 图 15c图 15g中给出了分块大津算法的检测效果,可以看出,不同体积分数的残留物均被有效检出,且在图 15g中还检测出了部分在图 15e中未被标记的残留物,这些残留物是木板在简单清洗中未被发现的历史残留,这进一步体现了设备对不可见残留物的检测能力。

    图 15 木制案板表面残留物检测效果
    图  15  木制案板表面残留物检测效果
    Figure  15.  Detection effect of residues on wooden cutting board surface

    图 16中给出了材质为不锈钢板条件下,奶粉和菠菜汁残留物的检测效果。其中图 16a图 16e分别是奶粉残留物和菠菜汁残留物RGB图像;图 16b图 16f分别为奶粉残留物和菠菜汁残留物荧光图像;图 16c图 16g分别是分块大津算法生成的奶粉残留物和菠菜汁残留物掩模图像;图 16d图 16h分别是奶粉残留物和菠菜汁残留物最终检测结果。如图 16a图 16e所示,由于不锈钢光滑镜面反射影响,体积分数为10%的菠菜汁残留物因接近无色而基本不可见;在荧光图像16b和图 16f中不同体积分数的残留物均清晰可见;分块大津算法可较好克服光照的影响,能够准确分割出污染物区域(见图 16c图 16g)。

    图 16 不锈钢表面残留物检测效果
    图  16  不锈钢表面残留物检测效果
    Figure  16.  Detection effect of residues on stainless steel surface

    PE塑料板上的奶粉和菠菜汁残留物检测效果如图 17所示。其中图 17a图 17e分别是奶粉残留物和菠菜汁残留物RGB图像;图 17b图 17f分别为奶粉残留物和菠菜汁残留物荧光图像;图 17c图 17g分别是分块大津算法生成的奶粉残留物和菠菜汁残留物掩模图像;图 17d图 17h分别为奶粉残留物和菠菜汁残留物最终检测结果。从图中可以看出,在环境光下,当奶粉体积分数低于33%、菠菜汁液体积分数低于10%时,难以通过RGB图像检测出残留物;而荧光图像可以较好地实现残留物检测。但从图 17c来看,当奶粉体积分数低于20%时,残留物的分割区域存在部分缺失现象,其原因可能在于:PE塑料板会发出和奶粉波段相近的荧光,当奶粉体积分数较低时,其荧光强度与背景接近,导致分割困难。

    图 17 PE塑料表面残留物检测效果
    图  17  PE塑料表面残留物检测效果
    Figure  17.  Detection effect of residues on PE plastic surface

    图 18给出了大津算法与分块大津算法对典型残留物的分割结果。其中图 18a图 18b分别是奶粉残留物在木制案板和不锈钢板上的荧光图像;图 18c图 18d分别为菠菜汁残留物在木制案板和不锈钢板上的荧光图像;图 18e图 18f图 18g图 18h分别是图 18a图 18b图 18c图 18d采用分块大津算法计算得到的掩模图像;图 18i图 18j图 18k图 18l分别是图 18a图 18b图 18c图 18d采用大津算法计算得到的掩模图像。绿色框为成功检测出残留物;红色框为未检测或错误检测残留物。在图 18a中检测设备位于木制案板上方,案板中间部分靠近光源的反射光强度更高,左上角远离光源强度较低,这导致在使用大津算法进行分割时图 18i中部分较为明亮的背景被判定为残留物而光照强度较低的残留物则未被检出;在图 18b中, 检测设备位于不锈钢板斜上方,不锈钢板右上角光照强度更高,左下角光照强度较低,大津算法在图 18j中将靠近光源的残留物检出而远离光源且体积分数较低的残留物未检出。大津算法在检测灰度范围较大的目标时会出现漏检;在木制案板(见图 18c)和不锈钢板(见图 18d)上菠菜汁荧光强度分布范围较大, 且部分菠菜汁残留物荧光强度接近背景光强;当使用大津算法进行检测时,部分荧光强度较低的残留物漏检(见图 18k), 而尽管在图 18l中所有残留物均被检出, 但是相较于分块大津算法结果(见图 18h),大津算法分割出的目标不够完整; 图 18e图 18f图 18g图 18h为分块大津算法检测结果,不同体积分数残留物均被检出;相较于大津算法检测结果,分块大津算法提高了设备在不均匀光照下的检测效果以及对于荧光强度分布范围较大检测目标的检测能力。

    图 18 分块大津算法和大津算法检测效果对比图
    图  18  分块大津算法和大津算法检测效果对比图
    Figure  18.  Comparison of detection effect between block OTSU and OTSU

    基于荧光成像技术开发了一种能够协助现场检测员对食品加工场所进行视觉卫生检查的手持式荧光成像检测设备,该设备具有荧光图像采集、图像处理、图像显示、图像保存功能,能够实时地将检测到的污染区域进行标记, 并根据需要保存在SD卡中。此外,还可以通过更换不同波长的滤波片实现多种食品残留物的检测。基于改进的分块大津算法,提高了设备在不均匀光照下的检测效果。在3种不同材质表面的实测证明,设备相较于检测员目视能够更清晰地观察到食品残留物,能够显著提高卫生检测效果,可以协助检测员进行卫生安全检查。受现场检测环境的限制,所开发的设备与待检测样本为非接触测量,由于现场多种因素的不确定性(如环境光源的干扰、手持式测量装置与被测对象的距离、角度等),导致利用荧光图像反演残留物体积分数的精度还存在较大困难。

    在今后的研究中,将深入分析影响残留物体积分数反演精度的关键要素和规律,构建补偿模型,以实现残留物体积分数的高精度反演,此外,还将实现云组网功能以及将荧光图像与深度学习算法相结合实现自动检测自动分割。

  • 图  1   相机成像模型与各坐标系之间关系

    Figure  1.   Relationship between the camera imaging model and each coordinate system

    图  2   光条中心提取结果

    a—线结构光光条照射在标定靶上  b—使用光条中心提取算法提取的光条中心结果

    Figure  2.   Extraction result of light stripe center

    a—line structured light strip exposed to a calibrated target  b—light stripe center results extracted using the light stripe center extraction algorithm

    图  3   标定靶圆心连线与光条相交

    a—每个圆心连成直线  b—圆心连线与光条中心线交点

    Figure  3.   Line linking the centers of the calibrated targets intersects the light stripe

    a—each center of the circles is connected to a straight line  b—line linking the centers of the circles intersects the center line of the light stripe

    图  4   标定板上两线的交点透视投影模型

    Figure  4.   Perspective projection model of the intersection of two lines on the calibration plate

    图  5   搭建的实验系统

    a—系统结构示意图  b—系统实物图  c—使用的圆形标定靶

    Figure  5.   Experimental system built

    a—schematic diagram of the system structure  b—physical view of the system  c—circular calibration target used

    图  6   系统标定流程图

    Figure  6.   System calibration flowchart

    图  7   光条图片与光条中心提取结果

    a—光条在标靶上的图片  b—各个位置光条提取结果

    Figure  7.   Light stripe picture and light strip center extraction results

    a—picture of the light stripe on the target  b—light stripe extraction results for each position

    图  8   光平面标定结果

    Figure  8.   Light plane calibration results

    图  9   量块实拍图与量块在不同位置的位移情况

    a—光平面照射在标准量块上的图片  b—移动量块在光平面不同位置的图片

    Figure  9.   Actual picture of the gauge block with the displacement of the block at different positions

    a—picture of the light plane onto the standard gauge block  b—picture of the moving gauge block at different positions in the light plane

    表  1   前6次测量结果

    Table  1   Results of the first 6 measurements/mm

    position 1 2 3 4 5 6
    our method 37.61066 38.11144 38.33195 38.59902 38.45734 37.06425
    ZHANG’s method 37.61856 38.11846 38.33737 38.60265 38.45980 37.06543
    下载: 导出CSV

    表  2   后10次测量结果

    Table  2   Results of the last 10 measurements/mm

    position 7 8 9 10 11 12 13 14 15 16
    our method 37.07062 36.74692 36.47288 37.94350 36.99725 37.88658 37.60713 36.67100 38.25522 38.29625
    ZHANG’s method 37.07013 36.74542 36.47009 37.93971 36.99215 37.87989 37.59973 36.66109 38.24422 38.28226
    下载: 导出CSV

    表  3   误差分析/mm

    Table  3   Error analysis/mm

    mean error mean error of the first 6 measurements mean error of the last 10 measurements RMS error of the first 6 measurements RMS error of the last 10 measurements RMS error of 16 measurements
    our method 2.36737 1.97089 2.60527 0.204202 0.284060 0.246337
    ZHANG’s method 2.36957 1.96629 2.61153 0.203766 0.284567 0.246575
    下载: 导出CSV
  • [1] 丁少闻, 张小虎, 于起峰, 等. 非接触式3维重建测量方法综述[J]. 激光与光电子学进展, 2017, 54(7): 070003. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201707003.htm

    DING Sh W, ZHANG X H, YU Q F, et al. Overview of non-contact 3D reconstruction measurement methods[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201707003.htm

    [2] 占栋, 肖建. 基于线结构光参考平面的多摄像机灵活标定方法研究[J]. 仪器仪表学报, 2015, 36(9): 2030-2036. DOI: 10.3969/j.issn.0254-3087.2015.09.014

    ZHAN D, XIAO J. Study on the flexible multiple camera calibration approach based on the reference plane emitted by line structured light[J]. Chinese Journal of Scientific Instrument, 2015, 36(9): 2030-2036(in Chinese). DOI: 10.3969/j.issn.0254-3087.2015.09.014

    [3] 张志俊, 吴庆阳, 邓亦锋, 等. 基于霍夫变换的结构光场3维成像方法[J]. 激光技术, 2023, 47(4): 492-499. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.008

    ZHANG Zh J, WU Q Y, DENG Y F, et al. Structured light field 3-D imaging method based on Hough transform[J]. Laser Technology, 2023, 47(4): 492-499(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.04.008

    [4]

    XU X B, FEI Zh W, YANG J, et al. Line structured light calibration method and centerline extraction: A review[J]. Results in Physics, 2020, 19: 103637. DOI: 10.1016/j.rinp.2020.103637

    [5] 张曦, 张健. 线结构光标定方法综述[J]. 激光与光电子学进展, 2018, 55(2): 020001. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201802001.htm

    ZHANG X, ZHANG J. Summary on calibration method of line-structured light[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020001 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201802001.htm

    [6]

    FAN J F, JING F Sh, FANG Z J, et al. A simple calibration method of structured light plane parameters for welding robots[C]// Chinese Control Conference(IEEE). New York, USA: IEEE, 2016: 6127-6132.

    [7]

    ZHENG F, KONG B. Calibration of linear structured light system by planar checkerboard[C]// International Conference on Information Acquisition(IEEE). New York, USA: IEEE, 2004: 344-346.

    [8]

    LI D, WEN G, HUI B W, et al. Cross-ratio invariant based line scan camera geometric calibration with static linear data[J]. Optics & Lasers in Engineering, 2014, 62: 119-125.

    [9]

    HUYNH D Q, HARTMANN P E, OWENS R A. Calibrating a structured light stripe system: A novel approach[J]. International Journal of Computer Vision, 1999, 33(1): 73-86. DOI: 10.1023/A:1008117315311

    [10] 刘震, 张广军, 魏振忠, 等. 一种高精度线结构光视觉传感器现场标定方法[J]. 光学学报, 2009, 29(11): 3124-3128. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200911033.htm

    LIU Zh, ZHANG G J, WEI Zh Zh, et al. An accurate calibration method for line structured light vision sensor[J]. Acta Optica Sinica, 2009, 29(11): 3124-3128(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200911033.htm

    [11]

    YU J H, YANG H X, LIU Z H, et al. The line-structured light plane calibration based on the Plücker line[C]// 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (IEEE). New York, USA: IEEE, 2021: 1106-1109.

    [12]

    XU G, ZAHNG X Y, SU J, et al. Solution approach of a laser plane based on Plücker matrices of the projective lines on a flexible 2D target[J]. Applied Optics, 2016, 55(10): 2653-2656. DOI: 10.1364/AO.55.002653

    [13]

    LI D D, WEN G J, HUI B W, et al. Cross-ratio invariant based line scan camera geometric calibration with static linear data[J]. Optics and Lasers in Engineering, 2014, 6: 119-125.

    [14]

    PAN X, LI Zh. High-accuracy calibration of line-structured light vision sensor by correction of image deviation[J]. Optics Express, 2019, 27(4): 4364-4385. DOI: 10.1364/OE.27.004364

    [15]

    CHEN R M, LI X H, WANG X H, et al. A planar pattern based calibration method for high precision structured laser triangulation measurement[J]. Proceedings of the SPIE, 2019, 11189: 1118914.

    [16]

    ZHANG G J, LIU Zh, SUN J H, et al. Novel calibration method for a multi-sensor visual measurement system based on structured light[J]. Optical Engineering, 2010, 49(4): 043602. DOI: 10.1117/1.3407429

    [17]

    XU G, HAO Z B, LI X T, et al. Calibration method of laser plane equation for vision measurement adopting objective function of uniform horizontal height of feature points[J]. Optical Review, 2016, 23(1): 33-39.

    [18]

    XU G, SUN L N, LI X T, et al. Global calibration and equation reconstruction methods of a three dimensional curve generated from a laser plane in vision measurement[J]. Optics Express, 2014, 22(18): 22043-22055.

    [19]

    YONG Q, WANG Y, NING J, et al. Calibration of line structured light senor based on active vision systems[C] // 2013 International Conference on Computational PROBLEM-Solving (IEEE). New York, USA: IEEE, 2013: 249-252.

    [20]

    YANG Sh M, YANG L L, ZHANG G F, et al. Modeling and calibration of the galvanometric laser scanning three-dimensional measurement system[J]. Nanomanufacturing and Metrology, 2018, 1(3): 180-192.

    [21] 李玥华, 赵勃冲, 胡泊, 等. 一种线结构光振镜扫描测量系统通用标定方法[J]. 光学学报, 2022, 42(10): 1015001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202210015.htm

    LI Y H, ZHAO B Ch, HU B, et al. Universal calibration method for line structured light galvanometer scanning system[J]. Acta Optica Sinica, 2022, 42(10): 1015001 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202210015.htm

    [22] 王腾, 杨树明, 李述胜, 等. 振镜激光扫描测量系统误差分析与补偿[J]. 光学学报, 2020, 40(23): 2315001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202023020.htm

    WANG T, YANG Sh M, LI Sh Sh, et al. Error analysis and compensation of galvanometer laser scanning measurement system[J]. Acta Optica Sinica, 2020, 40(23): 2315001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202023020.htm

    [23]

    LI Y H, ZHAO B Ch, ZHOU J B, et al. A universal method for the calibration of swing-scanning line structured light measurement system[J]. Optik, 2021, 241(1): 166930.

    [24]

    ZHANG Zh Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

    [25]

    STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(2): 113-125.

    [26]

    ALARD C, LUPTON R H. A method for optimal image subtraction[J]. Astrophysical Journal, 1998, 503(1): 325-331.

    [27] 张瑞峰, 舒子芸, 南刚雷. 一种新的线结构光标定方法[J]. 激光与光电子学进展, 2019, 56(22): 221101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201922010.htm

    ZHANG R F, SHU Z Y, NAN G L. Calibration method for line-structured light[J]. Laser & Optoelectronics Progress, 2019, 56(22): 221101(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201922010.htm

  • 期刊类型引用(1)

    1. 李天林,刘天元,黄梅珍. 基于采样平均法相差检测的溶解氧测量方法. 激光技术. 2025(01): 21-27 . 本站查看

    其他类型引用(0)

图(9)  /  表(3)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2022-12-21
  • 发布日期:  2023-11-24

目录

/

返回文章
返回