高级检索

偏振参数对高能电子运动及辐射特性的影响

常健平, 佘奕辰, 闫瑾, 田友伟

常健平, 佘奕辰, 闫瑾, 田友伟. 偏振参数对高能电子运动及辐射特性的影响[J]. 激光技术, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021
引用本文: 常健平, 佘奕辰, 闫瑾, 田友伟. 偏振参数对高能电子运动及辐射特性的影响[J]. 激光技术, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021
CHANG Jianping, SHE Yichen, YAN Jin, TIAN Youwei. Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons[J]. LASER TECHNOLOGY, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021
Citation: CHANG Jianping, SHE Yichen, YAN Jin, TIAN Youwei. Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons[J]. LASER TECHNOLOGY, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021

偏振参数对高能电子运动及辐射特性的影响

基金项目: 

国家自然科学基金资助项目 10947170

详细信息
    作者简介:

    常健平(2001-), 女, 大学本科生, 主要研究方向为高能激光和电子的相互作用

    通讯作者:

    田友伟, E-mail: tianyw@njupt.edu.cn

  • 中图分类号: O411.3

Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons

  • 摘要: 为了探究超强激光偏振参数的梯度变化对场内高能电子运动及辐射特性的影响, 首先以电磁学基本方程为基础, 推导并建立了初始动量为0的相对论性单电子加速模型, 其次编写无近似的数值模拟仿真程序进行迭代计算与理论分析, 取得了不同偏振参数的超强激光作用下单电子的运动以及空间辐射可视化数据。结果表明, 随着偏振参数δ由0到1逐渐增大, 电子的运动轨迹由2维平面振荡逐渐过渡为3维螺旋状前进, 绕旋幅度逐渐增大且轨迹投影逐渐趋向于正圆; 电子的功率辐射空间分布也从平面线性逐渐变为3维涡旋状, 由上下针状分叉逐渐变为平滑连接, 总体变化趋势可按形态划分为δ=0, δ∈(0, 0.6], δ∈(0.6, 0.99]以及δ=1共4个阶段。该结果为高能电子辐射研究提供了多视角的理论及数值依据, 对实际应用中精确探测超强激光各项参数是有帮助的。
    Abstract: In order to explore the gradient changes of super laser polarization parameters based on the high energy electron motion and the influence of radiation characteristics, based on the basic equation of electromagnetism, a relativistic electron acceleration model was derived and set up with the initial momentum of 0. Then a numerical simulation program of no approximation was developed for iterative calculation and theoretical analysis. Visualized data of single electron motion and space radiation under different polarization parameters were obtained. The results show that with the increase of the polarization parameter δ from 0 to 1, the trajectory of the electron gradually changes from 2-D plane oscillation to 3-D spiral, and the amplitude of rotation increases gradually, and the trajectory projection tends to be positive circle. The spatial distribution of electron power radiation gradually changed from planar linear to 3-D vortex, and gradually changed from up-down needle-like bifurcation to smooth connection. The general change trend can be divided into four stages according to morphology: δ=0, δ∈(0, 0.6], δ∈(0.6, 0.99] and δ=1. The results provide a theoretical and numerical basis for the study of high-energy electron radiation from multiple perspectives, and are helpful for the accurate detection of super-strong laser parameters in practical applications.
  • 图  1   静止电子与激光脉冲相互作用的示意图

    Figure  1.   Schematic diagram of static electron interaction with laser pulse

    图  2   偏振参数分别为0, 0.5, 0.93和1时单电子运动轨迹图

    Figure  2.   Single electron trajectories when polarization parameters are 0, 0.5, 0.93 and 1, respectively

    图  3   不同偏振参数的激光对单电子辐射功率空间分布的影响

    Figure  3.   Influence of laser with different polarization parameters on the spatial distribution of single electron radiation power

  • [1]

    FENNEL T, MEIWES-BROER K H, TIGGESBÄUMKER J, et al. Laser-driven nonlinear cluster dynamics[J]. Reviews of Modern Physics, 2010, 82(2): 1793-1842. DOI: 10.1103/RevModPhys.82.1793

    [2]

    ESAREY E, SCHROEDER C B, LEEMANS W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. DOI: 10.1103/RevModPhys.81.1229

    [3] 张杰. 强场物理——一门崭新的学科[J]. 物理, 1997, 26(11): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ711.001.htm

    ZHANG J. Physics of strong fields——A new subject[J]. Physics, 1997, 26(11): 5-11 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ711.001.htm

    [4]

    MOUROU G A, TAJIMA T, BULANOV S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(2): 309-371. DOI: 10.1103/RevModPhys.78.309

    [5]

    BRABEC T, KRAUSZ F. Intense few-cycle laser fields: Frontiers of nonlinear optics[J]. Review of Modern Physics, 2000, 72(72): 545-591.

    [6] 王红英. 光学参量啁啾脉冲放大技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2008: 1-125.

    WANG H Y. Study on optical parametric chirped pulse amplification technology[D]. Xi'an: Graduate University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), 2008: 1-125(in Chinese).

    [7] 李明华. 超快激光驱动的电子束与X射线源[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2017, 63-64.

    LI M H. Electron beam and X-ray source driven by ultrafast laser[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2017: 63-64(in Chin-ese).

    [8]

    COSSACK M. All-optical scheme for generation of isolated attosecond electron pulses[J]. Physical Review Letters, 2019, 123(20): 202-203.

    [9]

    LEE K, CHUNG S Y, PARK S H, et al. Effects of high-order fields of a tightly focused laser pulse on relativistic nonlinear Thomson sca-ttered radiation by a relativistic electron[J]. EPL (Europhysics Le-tters), 2010, 89(6): 613-630.

    [10] "我国激光技术与应用2035发展战略研究"项目综合组. 我国激光技术与应用2035发展战略研究[J]. 中国工程科学, 2020, 22(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202003002.htm

    COMPREHENSIVE GROUP OF "CHINA LASER TECHNOLOGY AND APPLICATION 2035 DEVELOPMENT STRATEGY RESEARCH" PROJECT. Strategic research on China's laser technology and its application by 2035[J]. Strategic Study of Chinese Aca-demy of Engineering, 2020, 22(3): 1-6 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202003002.htm

    [11]

    TEUBNER U, GIBBON P. High-order harmonics from laser-irradiated plasma surfaces[J]. Reviews of Modern Physics, 2009, 81(2): 445-479. DOI: 10.1103/RevModPhys.81.445

    [12]

    KRITCHER A L, NEUMAYER P, CASTOR J, et al. Ultrafast X-ray Thomson scattering of shock-compressed matter[J]. Science, 2008, 322(5898): 69-71. DOI: 10.1126/science.1161466

    [13]

    CORDE S, PHUOC K T, LAMBERT G, et al. Femtosecond X-rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. DOI: 10.1103/RevModPhys.85.1

    [14]

    WU H C. Phase-independent generation of relativistic electron sheets[J]. Applied Physics Letters, 2011, 99(2): 021503. DOI: 10.1063/1.3609872

    [15] 郑君, 盛政明, 张杰, 等. 影响单电子非线性汤姆孙散射因素的研究[J]. 物理学报, 2005, 54(3): 1018-1035. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm

    ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors a-ffecting the single electron nonlinear Thomson scattering[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm

    [16]

    POPA A. Accurate calculation of high harmonics generated by relativistic Thomson scattering[J]. Journal of Physics, 2007, B41(1): 015601.

    [17] 田友伟, 李升华, 董健堂. 周期量级强激光场中电子振荡所导致的辐射的空间分布特性[J]. 光散射学报, 2010, 22(2): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201002003.htm

    TIAN Y W, LI Sh H, DONG J T. Spatial distribution characteristics of radiation induced by electron oscillations in periodic high intensity laser field[J]. Journal of Light Scattering, 2010, 22(2): 120-123 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201002003.htm

    [18] 吴悦, 刘宇航, 崔艺, 等. 束腰半径对高能电子与圆偏振激光对撞运动轨迹的影响[J]. 激光杂志, 2020, 41(7): 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202007009.htm

    WU Y, LIU Y H, CUI Y, et al. Influence of beam waist radius on the trajectory of collisions between high-energy electrons and circularly polarized lasers[J]. Laser Journal, 2020, 41(7): 44-46 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202007009.htm

    [19] 李康, 田友伟. 圆偏振激光脉冲加速高能电子的运动数值模拟[J]. 激光杂志, 2019, 40(3): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201903006.htm

    LI K, TIAN Y W. Numerical simulation of high energy electron acceleration by circularly polarized laser pulse[J]. Laser Journal, 2019, 40(3): 23-26(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201903006.htm

    [20] 吕崇玉, 陈泽洋, 朱文欣, 等. 紧聚焦强激光脉冲中电子的非对称性辐射[J]. 激光技术, 2022, 46(3): 422-426. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.020

    LV Ch Y, CHEN Z Y, ZHU W X, et al. The asymmetric emission of electrons in tightly focused high intensity laser pulses[J]. Laser Technology, 2022, 46(3): 422-426(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.020

  • 期刊类型引用(2)

    1. 安奥博,陈茂霖,赵立都,马成林,刘祥江. 长测距地基点云密度自适应平面分割算法. 激光技术. 2023(05): 606-612 . 本站查看
    2. 陶志勇,李衡,豆淼森,林森. 融合多分辨率特征的点云分类与分割网络. 光电工程. 2023(10): 56-67 . 百度学术

    其他类型引用(4)

图(3)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-11-07
  • 修回日期:  2022-01-18
  • 发布日期:  2023-01-24

目录

    /

    返回文章
    返回