Theoretical study of super-oscillation telescope imaging with atmospheric turbulence
-
摘要: 为了实现大气湍流动态干扰下望远镜对远距离目标的超衍射极限成像, 采用光学超振荡原理局部衍射压缩光学系统点扩散函数, 并对提高成像分辨率效果进行了理论研究。结果表明, 中等湍流强度校正后, 波前残差均方根约为波长的1/15(波长λ=632.8 nm)时的干扰下, 超振荡光场调制能够实现望远系统点扩散函数的衍射压缩, 衍射压缩倍率为0.75;对不同中心间距双孔的成像研究验证了超振荡望远系统约0.80倍瑞利衍射极限的超分辨成像效果; 波前残差的均方根大小可能会导致望远系统点扩散函数的衍射压缩倍率和成像分辨率存在差异。此研究结果可应用于高精度星点定位、超分辨望远等领域。Abstract: In order to achieve sub-diffraction limited imaging of the distant objects with telescope under the dynamical disturbance of the atmospheric turbulence, the optical super-oscillation phenomenon was utilized to locally compress the point spread function of the telescope. Theoretical study was performed to investigate the imaging resolution improvement with super-oscillation phenomenon. In the case of the modest atmospheric turbulence, the adaptive optics closed-loop root mean square of the simulated residual wave front error is about 1/15 of wavelength. The numerical full width at half maxima of the super-oscillation spot is about 0.75 times of the Airy spot at the working wavelength of 632.8 nm. In addition, the imaging results of the two holes with different center-to-center distances validate that the resolving ability of the super-oscillation telescope is about 0.80 times of the Rayleigh criterion. Different root mean square of the residual wave front error would result in the diffractive compression ratio of the telescope's point spread function and the improvement of the imaging resolution. It is believed that this study provides a practical method for the high-precision star positioning and the super-resolution telescope etc.
-
Keywords:
- Fourier optics /
- telescope /
- super-oscillation /
- atmospheric turbulence
-
引言
在物体结构测量时,有非光学探测和光学测量方式,其中光学测量技术因为具有非接触、测量速度高、系统结构简单等优点被广泛地应用[1-4]。随着纳米技术的快速发展,对成像系统的空间分辨率的要求越来越高。由于携带物体高频细节信息的倏逝波沿着物体表面按指数衰减,在波长量级的距离内很快衰减为0,导致成像系统在远场受到衍射效应的限制。由于倏逝波携带了物体的更多高频细节信息,利用在近场扫描探测的方法可以获得倏逝波实现超越衍射极限的分辨率,如近场扫描光学显微镜和受激发射损耗荧光显微镜[5-6]。1972年,ASH等人通过近场扫描显微镜,获得了超分辨率显微成像,由于其是通过探针在近场区域逐点进行扫描测量物体的信息,耗时长,无法实时地成像[5]。2000年,PENDRY通过介电常数和磁导率均为负数的材料制成了完美透镜将倏逝波放大,实现了在近场突破衍射极限的成像[7]。2004年, 美国加州大学ZHANG团队利用银板制成了近场透镜[8], 为了实现远场超分辨率成像,2007年,该团队首先利用负折射率材料制成的超级透镜将倏逝波放大,然后利用光栅的频移特性将倏逝波转换成传输波,实现远场超分辨率成像[9], 同年,他们使用双曲透镜实现了远场超分辨率成像,其结构必须严格设计,在实际应用时也受到了限制[10]。近年来,利用微球结合普通的光学显微镜在远场实现了突破衍射极限的分辨率,有结构简单、成本低等优点[11-21],吸引了许多国内外众多学者的关注。作者通过折射率为2、半径为26.5μm的钛酸钡微球与光学显微镜相结合, 实现对蓝光光盘的远场超分辨成像。
1. 理论分析
1.1 普通光学显微镜的极限分辨率
普通光学显微成像系统记录过程的简化模型如图 1所示。(x, y)为物体所在的平面,垂直于物平面的z轴为光的传播方向,物平面距显微物镜面的距离为d1, 显微物镜面的距离与像面的距离为d2, d1和d2满足物像关系。
当用一束平面光波垂直照射被测物体后,在物体表面,即z=0处,物体光波场的分布为[18-22]:
\begin{array}{c} u(\mathit{x}, \mathit{y}, 0) = \\ \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } U } \left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y};0} \right)\exp \left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right]{\rm{d}}{\mathit{\boldsymbol{k}}_x}{\rm{d}}{\mathit{\boldsymbol{k}}_\mathit{y}} \end{array} (1) 式中, (kx, ky)为沿着x, y方向的空间波矢分量。
在空气中传播距离d1后的物体光波场为:
\begin{array}{c} u(\mathit{x}, \mathit{y}, {\mathit{d}_1}) = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } U } \left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right) \times \\ \exp \left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y + {\mathit{\boldsymbol{k}}_\mathit{z}}{\mathit{d}_1}} \right)} \right]{\rm{d}}{\mathit{\boldsymbol{k}}_x}{\rm{d}}{\mathit{\boldsymbol{k}}_\mathit{y}} \end{array} (2) 式中, kz2=k02-kx2-ky2,k0为不同方向叠加的空间波矢,k0=2π/λ为光波在传播方向的波数,kz为沿着z方向的空间波矢分量, λ为照明光波波长。
(2) 式表示物体光波场是由空间频率为(kx, ky)的无穷多组平面波沿不同传播方向的叠加,每组平面波可表示为[21-22]:
\mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y + {\mathit{\boldsymbol{k}}_\mathit{z}}\mathit{z}} \right)} \right] (3) 当k02>kx2+ky2时,传播距离d1后其光场分布为:
\begin{array}{c} \mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right] \times \\ {\rm{exp}}({\rm{i}}\sqrt {\mathit{\boldsymbol{k}}_0^2 - \mathit{\boldsymbol{k}}_\mathit{x}^2 - \mathit{\boldsymbol{k}}_\mathit{y}^2} {\mathit{d}_1}) \end{array} (4) 引入一个相位延迟因子 {\rm{exp}}({\rm{i}}\sqrt {\mathit{\boldsymbol{k}}_0^2 - \mathit{\boldsymbol{k}}_\mathit{x}^2 - \mathit{\boldsymbol{k}}_\mathit{y}^2} {\mathit{d}_1}) ,表示传播距离d1后只引起了各个频谱分量的相对相位,属于低空间频率分量的传输波。
当k02 < kx2+ky2=k//2时, \sqrt {\mathit{\boldsymbol{k}}_0^2 - \mathit{\boldsymbol{k}}_\mathit{x}^2 - \mathit{\boldsymbol{k}}_\mathit{y}^2} = {\rm{i}}\mathit{\mu } 为纯虚数,其中 \mathit{\mu = }\sqrt {\mathit{\boldsymbol{k}}_x^2 - \mathit{\boldsymbol{k}}_y^2 - \mathit{\boldsymbol{k}}_0^2} ,传播距离d1后其光场分布为:
\mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}( - \mathit{\mu }{\mathit{d}_1}){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right] (5) 此称为倏逝波,随着传播距离d1的增加,其振幅按指数规律衰减,当传播距离大于一个波长λ时很快衰减为0。由于d1≫λ,倏逝波没有达到显微物镜面,不能参与远场成像。成像系统频谱分布如图 2所示。
能参与远场成像的传输波被限制为k02>kx2+ky2,其最大的横向空间波矢为:
{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}} = {\mathit{\boldsymbol{k}}_0} (6) 因此, 远场成像的横向最高空间频率被限制在[7, 20-21]:
{f_{//, {\rm{max}}}} = \frac{{{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} = \frac{1}{\mathit{\lambda }} (7) 如图 2所示,横向频率小于1/λ时,为传输波; 横向频率大于1/λ时,为倏逝波,沿着传播方向衰减,在探测器处无法探测到。因此远场成像系统的空间分辨率为[7, 20]:
\mathit{\delta = }\frac{1}{{2{\mathit{f}_{//, {\rm{max}}}}}} = \frac{\mathit{\lambda }}{2} (8) 因此普通光学显微镜的极限分辨率为λ/2。由于倏逝波携带了纳米结构样品的更多亚波长细节信息,为了在远场实现超越衍射极限的分辨率,需要收集到倏逝波。
1.2 基于微球的超分辨率成像
当横向波矢量满足k02 < kx2+ky2=k//2时,由(5)式可知,在传播距离为λ处倏逝波会衰减为0,在远场不能参与成像。当将微球放置于物体的表面, 如图 3所示。为了简单起见,分析y=0的情况。半径为R、折射率为n的微球放置于物体的表面,其与物体的接触点为O。取微球边缘的P点作为入射点,由于倏逝波在空气中传播波长λ的距离处时会衰减为0,因此需满足h < λ,其中h为P点到物体表面的垂直距离。u和w分别表示过P点的切向和法向方向,w与z之间的夹角为θ。在空气中,k0分解到x和y方向的波矢量分别为kx和ky。
微球中,分解到u和w方向的波矢量分别为ku和kw,且满足:
\mathit{\boldsymbol{k}}_u^2 + \mathit{\boldsymbol{k}}_w^2 = {\mathit{n}^2}\mathit{\boldsymbol{k}}_0^2 (9) 当倏逝波入射到微球时,通过Snell定量可知,微球内沿着u方向的波矢量ku可以表示为[18-19]:
\begin{array}{c} \mathit{\boldsymbol{k}}_u^2 = \mathit{\boldsymbol{k}}_x^2{\rm{co}}{{\rm{s}}^2}\mathit{\theta + }\mathit{\boldsymbol{k}}_\mathit{z}^2{\rm{si}}{{\rm{n}}^2}\mathit{\theta } = \\ \mathit{\boldsymbol{k}}_x^2{\rm{co}}{{\rm{s}}^2}\mathit{\theta } - {\left| {{\mathit{\boldsymbol{k}}_z}} \right|^2}{\rm{si}}{{\rm{n}}^2}\mathit{\theta } \end{array} (10) 当kx2cos2θ-|kz|2sin2θ>n2k02时,传播到微球中仍然为倏逝波,在远场衰减为0。
当kx2cos2θ-|kz|2sin2θ < n2k02时,在微球中将倏逝波转换成了传输波。因此,倏逝波通过微球后,微球将部分倏逝波转换成传输波,通过显微物镜成像在探测器上。f为显微物镜的焦距,d1和d2同样满足物像关系。由此可得kx满足如下的关系[18-20]:
\mathit{\boldsymbol{k}}_0^2 \le \mathit{\boldsymbol{k}}_x^2 \le \frac{{\mathit{\boldsymbol{k}}_0^2({\mathit{n}^2} - {\rm{si}}{{\rm{n}}^2}\mathit{\theta })}}{{1 - 2{\rm{si}}{{\rm{n}}^2}\mathit{\theta }}} (11) 式中, {\rm{sin}}\mathit{\theta } \approx \sqrt {2\mathit{Rh}} /\mathit{R} ,代入(11)式可得:
\mathit{\boldsymbol{k}}_x^2 \le \frac{{\mathit{\boldsymbol{k}}_0^2({\mathit{n}^2}\mathit{R} - 2\mathit{h})}}{{\mathit{R} - 4\mathit{h}}} (12) 物体散射后产生的倏逝波在微球里传播与微球的半径和折射率有关,且需满足(12)式。
由(12)式可知,通过微球后可获得最大的空间频率为:
{\mathit{f}_{{\rm{max}}}} = \frac{{{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} = \frac{1}{\mathit{\lambda }}\sqrt {\frac{{{\mathit{n}^2}\mathit{R} - 2\mathit{h}}}{{\mathit{R} - 4\mathit{h}}}} (13) 微球光学显微成像系统可分辨的最小距离为:
\mathit{d} = \frac{1}{{2{\mathit{f}_{{\rm{max}}}}}} = \frac{\mathit{\lambda }}{2}\sqrt {\frac{{\mathit{R} - 4\mathit{\lambda }}}{{{\mathit{n}^2}\mathit{R} - 2\mathit{\lambda }}}} (14) 由(14)式可知,微球光学显微成像系统可分辨的最小距离与微球的折射率和半径有关。由于n2R-2λ-(R-4λ)>0,由(14)式可得:
d < \frac{\mathit{\lambda }}{2} (15) 2. 仿真研究
利用COMSOL Multiphysics软件来分析微球的光纳米喷射特性。用波长为400nm的平行光照射折射率为1.46、半径分别为5μm和26.5μm的二氧化硅微球以及折射率为2、半径为26.5μm的钛酸钡微球后,产生的光纳米喷射结果分别如图 4a、图 4b和图 4c所示。分别在其光纳米喷射光斑的最大光强处作出沿着竖直方向上的强度分布如图 5所示。仿真结果表明,微球对平行光产生光纳米喷射的作用,且其光纳米喷射光斑的半径小于λ/2;从仿真结果图 4a、图 4b和图 5可以看出,对相同折射率不同半径的微球,光喷射的尺寸随着微球半径的增大而增大;从图 4b、图 4c和图 5可以看出,对相同半径不同折射率的微球,光喷射的尺寸随着折射率的增大而减小,说明微球具有收集倏逝波的作用。当成像系统中加入微球后可以使其分辨率突破衍射极限。
3. 基于微球超分辨率成像的实验研究
将钛酸钡微球与光学显微镜组合成远场超分辨率成像系统,其实验光路如图 6所示。所用的光学显微镜为OLYPUS BX51,显微物镜的数值孔径(numerical cperture, NA)为0.9,放大倍数为100×。实验中利用反射模式,中心波长为600nm的卤素灯作为光源; 显微镜的极限分辨率为406.6nm; 线宽为200nm、间隔为100nm的蓝光光盘作为被测对象。通过扫描电子显微镜(scanning electron microscopy, SEM)测得的蓝光光盘的结构如图 7a所示。由于蓝光光盘尺寸小于显微镜的极限分辨率,直接在显微镜下观察不到蓝光光盘的细节信息如图 7b所示。从仿真结果图 4可知, 折射率为1.46、半径为5μm的二氧化硅微球与折射率为2、半径为26.5μm的钛酸钡微球产生的光喷射尺寸相近,且都小于折射率为1.46、半径为26.5μm的二氧化硅微球。为了得到大视场的超分辨率成像,实验研究中所选用的微球参量为折射率为2、半径为26.5μm的钛酸钡微球,微球直接在显微镜下的成像如图 7c所示。在实验前将蓝光光盘上面的保护膜去掉,并将微球用去离子水稀释后,滴到蓝光光盘的表面上,等水蒸发完后,将微球半浸没在无水的乙醇溶液中。
Figure 7. The imaging results of the blu-ray disca—the image of the blu-ray disc by SEM b—the image of the blu-ray disc by optical microscopy c—the image of microsphere by optical microscopy& d—the image of the blu-ray disc by microsphere-based microscopy e—the magnified rectangle area marked with solid blue line in Fig.7d通过微球结合光学显微镜的成像系统得到蓝光光盘的像如图 7d所示。图 7e为图 7d方框区域的放大图。从图 7e可以看出, 蓝光光盘的细节信息被清晰分辨。实验结果说明, 实验中加入微球后可将携带物体细节信息的倏逝波转换成传输波参与远场成像,实现了样品的超分辨率成像。
4. 结论
针对对微纳结构元器件结构检测精度高、速度快的需求,设计了一套基于微球与传统光学显微镜相结合的远场超分辨率成像系统,并分析了该成像系统的实现远场超分辨率成像的物理机理。利用微球对平行光产生光纳米喷射的特性,将携带物体高频细节信息的倏逝波转换成传输波,然后传输波通过显微物镜在光电探测器处成像实现远场超分辨成像;实验中实现了对蓝光光盘的远场超分辨率成像,获得了100nm的分辨率。由于微球具有球对称性,其可以实现各个方向的超分辨率成像。
该成像方法具有系统结构简单、成本低等优点,可以应用于对微纳元件结构的检测、光刻技术、生物医学等领域。
-
图 1 a—大气湍流校正后波前残差干扰下,超振荡原理压缩望远系统点扩散函数的原理示意图b—振荡光学透镜的二元相位ΦSOL(r)随望远镜半径R的变换规律
Figure 1. a—residual wavefront interference of atmospheric turbulence correction, schematics of diffraction shrinkage point spread function of telescope with super-oscillation principle b—dependence of the binary phase profile of the super-oscillation lens ΦSOL(r) on telescope radius R
图 2 a, d—理论设计的超振荡望远系统焦平面强度和观察线强度分布b, e—中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,望远系统焦平面强度和观察线强度分布c, f—中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,超振荡望远系统焦平面强度和观察线强度分布
Figure 2. a, d—distribution of focal plane intensity and observation line intensity of SO-telescope of theoretical design b, e—distribution of focal plane intensity and observation line intensity of telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength c, f—distribution of focal plane intensity and observation line intensity of SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
图 3 中等湍流强度校正后,波前残差均方根约为波长的1/15时的干扰下,望远系统和超振荡望远系统对不同中心间距双孔的成像结果
a, d, g, j—d=64.80 μm b, e, h, k—d=86.40 μm c, f, i, l—d=122.40 μm
Figure 3. Distribution of two holes imaging with different center-to-center distances of telescope and SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
a, d, g, j—d=64.80 μm b, e, h, k—d=86.40 μm c, f, i, l—d=122.40 μm
图 4 中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,望远系统和超振荡望远系统对不同中心间距双孔的成像对比度变化规律
Figure 4. Distribution of imaging contrast of two holes with different center-to-center distances of telescope and SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
-
[1] 牛顿. 光学[M]. 北京: 北京大学出版社, 2007: 103-104. NEWTON I. Opticks[M]. Beijing: Peking University Press, 2007: 103-104 (in Chinese).
[2] 姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45(3): 170489. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201803002.htm JIANG W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201803002.htm
[3] RAILEIGH L. On the theory of optical images, with special reference to the microscope[J]. Journal of the Royal Microscopical Society, 1903, 23(4): 474-482. DOI: 10.1111/j.1365-2818.1903.tb04831.x
[4] 玻恩M, 沃尔夫E. 光学原理[M]. 北京: 科学出版社, 2007: 382-383. BORN M, WOLF E. Principles of optics[M]. Beijing: Science Press, 2007: 382-383 (in Chinese).
[5] TORALDO G. Super-gain antennas and optical resolving power[J]. Nuovo Cimento Supplemento, 1952, 9(3): 426-435.
[6] HEGEDUS Z S, SARAFIS V. Superresolving filters in confocally scanned imaging systems[J]. Journal of the Optical Society of American, 1986, A3(11): 1892-1896.
[7] WILSON T, HEWLETT S J. Superresolution in confocal scanning microscopy[J]. Optics Letters, 1991 16(14): 1062-1064. DOI: 10.1364/OL.16.001062
[8] CORRAL M M, CABALLERO T, STELZER E, et al. Tailoring the axial shape of the point spread function using the toraldo concept[J]. Optics Express, 2002, 10(1): 98-103. DOI: 10.1364/OE.10.000098
[9] DAVIS B J, KARL W C, SWAN A K, et al. Capabilities and limit-ations of pupil-plane filters for superresolution and image enhancement[J]. Optics Express, 2004, 12(17): 4150-4156. DOI: 10.1364/OPEX.12.004150
[10] BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics, 2006, A39(22): 6965-6977.
[11] ROGER E T, ZHELUDEV N I. Optical super-oscillations: Sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 2013, 15(9): 094008. DOI: 10.1088/2040-8978/15/9/094008
[12] HUANG F M, KAO T S, FEDOTOV V A, et al. Nanohole array as a lens[J]. Nano Letters, 2008, 8(8): 2469-2472. DOI: 10.1021/nl801476v
[13] HUANG F M, ZHELUDEV N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3): 1249-1254. DOI: 10.1021/nl9002014
[14] ROGERS E, LINDBERG J, ROY T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. DOI: 10.1038/nmat3280
[15] WANG Ch T, TANG D L, WANG Y Q, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5: 18485. DOI: 10.1038/srep18485
[16] TANG D L, WANG Ch T, ZHAO Z Y, et al Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.
[17] LI Zh, ZHANG T, WANG Y Q, et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Lasers & Photonics Review, 2018, 12(10): 1800064.
[18] CHEN L, LIU J, ZHANG X H, et al. Achromatic super-oscillatory metasurface through optimized multiwavelength functions for sub-di-ffraction focusing[J]. Optics Letters, 2020, 45(20): 5772-5775. DOI: 10.1364/OL.404764
[19] 林巧文, 杨春花, 刘红梅, 等. 基于微球透镜远场超分辨率成像方法研究[J]. 激光技术, 2021, 45(6): 686-690. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.002 LIN Q W, YANG Ch H, LIU H M, et al. Far-field super-resolution imaging based on microsphere lens[J]. Laser Technology, 2021, 45(6): 686-690(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.002
-
期刊类型引用(1)
1. 周健文,姚纳,赵汗青,张云凡,焦蛟,孙旭,伍波. 大气湍流下超振荡望远成像的理论研究. 激光技术. 2023(01): 115-120 . 本站查看
其他类型引用(0)