Research on laser-induced local spectral response of CdTe solar cell
-
摘要: 为了反映器件几何尺度上各个区域的性能分布, 采用波长为852 nm且可调聚焦面积的激光束作用在CdTe薄膜太阳电池的P-N结微区表面, 产生定域诱导光致电流响应, 并通过设置样品台的步进方式, 得到了所测器件在几何面积范围内的微区光谱响应分布图, 获得更直观的器件电流分布均匀性和P-N结特性。结果表明, 这种测试方式能够简化且低成本地建立与CdS/CdTe异质结制作技术密切相关的沉积与后处理工艺参数和材料特性的联系, 进而获得异质结界面分布均匀性与太阳电池电流-电压(I-V)特性参数均匀性的对应关系。该研究可为提高太阳电池的性能提供实验测试依据。
-
关键词:
- 激光技术 /
- 微区光谱响应 /
- 激光诱导 /
- CdTe薄膜太阳电池
Abstract: In order to reflect the distribution of the performance of each region on the geometric scale of the device, a laser beam with a wavelength of 852 nm and an adjustable focusing area was used to act on the surface of the P-N junction microregion of the CdTe thin-film solar cell to generate a localized induced photocurrent. By setting the step-by-step method of the sample stage, the micro-region spectral response distribution map of the measured device within the geometric area range was obtained, and a more intuitive device current distribution uniformity and P-N junction characteristics were obtained. The results show that the relationship between the deposition and post-processing parameters and material properties that are closely related to the CdS/CdTe heterojunction fabrication technology can be simplified and cost-effectively established by using this test method, and then the heterojunction interface distribution uniformity and solar cells can be obtained. The corresponding relationship of the uniformity of I-V characteristic parameters provides experimental test basis for improving the performance of solar cells.-
Keywords:
- laser technique /
- local spectral response /
- laser-induced /
- CdTe thin-film solar cell
-
-
表 1 电池性能参数
Table 1 Battery performance parameters
No. VOC/mV JSC/(mA·cm-2) FF/% efficiency/% Rs/(Ω·cm2) Rsh/(Ω·cm2) 1 751.6 23.98 69.06 12.45 5 1173 2 771.5 24.20 67.12 12.53 6 1134 3 741.8 23.23 62.78 10.82 8 614 4 694.1 7.34 52.22 5.31 26 447 -
[1] BLISS M, SMITH A, BETTS T R, et al. Spectral response measurements of perovskite solar cells[J]. IEEE Journal of Photovoltaics, 2019, 9(1): 220-226. DOI: 10.1109/JPHOTOV.2018.2878003
[2] MUDGAL S, SINGH S, KOMARALA V K, et al. Investigation of electrical parameters of amorphous-crystalline silicon heterojunction solar cells: Correlations between carrier dynamics and S-shape of current density-voltage curve[J]. IEEE Journal of Photovoltaics, 2018, 8(4): 909-915. DOI: 10.1109/JPHOTOV.2018.2821839
[3] 王少熙, 杜幸芝, 樊晓桠. 不同光谱响应太阳能电池测试差异性研究[J]. 电子元件与材料, 2018, 37(2): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201802005.htm WANG Sh X, DU X Zh, FAN X Y. Study of difference when testing solar cell having different spectral response[J]. Electronic Components and Materials, 2018, 37(2): 30-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201802005.htm
[4] DALAL V, LEONARD M, BOOKER J, et al. Quantum efficiency of amorphous alloy solar cells[C]// Conference Record of the Eighteenth IEEE Photovoltaic Specialists Conference. New York, USA: IEEE, 1985: 37-41.
[5] NAKAMOTO T, MAKITA K, TAYAGAKI T, et al. Spectral response measurements of each subcell in monolithic triple-junction GaAs photovoltaic devices[J]. Applied Physics Express, 2019, 12(10): 102015. DOI: 10.7567/1882-0786/ab45d8
[6] JONES E W, HOLLIMAN P J, PETER L M. Spectral response map-ping of co-sensitized dye-sensitized solar cells dyed processed using rapid adsorption/desorption[J]. Materials Letters, 2019, X3: 100015.
[7] AHANGHARNEJHAD R H, SONG Z, DEWITT J L, et al. Decreasing the resolution limit of laser beam induced current measurements below the beam size without confocal optics: Determining laser scribe widths[J]. Solar Energy Materials and Solar Cells, 2020, 215(1): 110660.
[8] HUANG J, YANG D, LI W, et al. Copassivation of polycrystalline CdTe absorber by CuCl thin films for CdTe solar cells[J]. Applied Surface Science, 2019, 484: 1214-1222. DOI: 10.1016/j.apsusc.2019.03.253
[9] WALLMARK J T. A new semiconductor photocell using lateralphotoeffect[J]. Proceedings of the IRE, 1957, 45(4): 474-483. DOI: 10.1109/JRPROC.1957.278435
[10] MUSCA C A, REDFERN D A, DEELL J M, et al. Laser beam induced current as a tool for HgCdTe photo-diode characterisation[J]. Microelectronics Journal, 2000, 31: 334-343.
[11] 谭宇, 陆健. 连续激光辐照三结GaAs太阳电池热应力场研究[J]. 激光技术, 2020, 44(2): 250-254. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.020 TAN Y, LU J. Study on thermal stress field of three junction GaAs solar cells irradiated by continuous laser[J]. Laser Technology, 2020, 44(2): 250-254(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.02.020
[12] FENG L H, WU L L, LI X X, et al. Analysis of build-in electrostatic field in CdTe thin film solar cells by Qe measurements at bias voltages, 32nd european photovoltaic solar energy conference and exhibition[C]//WIP Renewable Energies. Munich, German: WIP Economy and Infrastructure GmbH & Co Planungs-KG, 2016: 1241-1243.
[13] ARAUJO G L, SANCHEZ E, MARTI M. Determination of the two-exponential solar cell equation parameters from empirical data[J]. Solar Cells, 1982, 5(2): 199-204. DOI: 10.1016/0379-6787(82)90027-8
[14] CARSTENSEN J, POPKIROV G, BAHR J, et al. CELLO: An advanced LBIC measurement technique for solar cell local characteriza-tion[J]. Solar Energy Materials and Solar Cells, 2003, 76(4): 599-611. DOI: 10.1016/S0927-0248(02)00270-2
[15] WANG W, XIA G, ZHENG J, et al. Study of polycrystalline ZnTe (ZnTe∶Cu) thin films for photovoltaic cells[J]. Journal of Materials Science Materials in Electronics, 2007, 18(4): 427-431. DOI: 10.1007/s10854-006-9044-0
[16] ZENG G G, ZHANG J Q, WAN W W, et al. Correlation of interfacial transportation properties of CdS/CdTe heterojunction and performance of CdTe polycrystalline thin-film solar cells[J]. International Journal of Photoenergy, 2015, 9: 1-8.
[17] GREEN M, DUNLOP E, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 58)[J]. Progress in Photovoltaics: Research and Applications, 2021, 6: 1-11.
[18] ZENG G G, PAUL H, ALI K, et al. Correlation of microscopic grain evolution in post-CdCl2 annealing and performance of CdS/CdTe thin film solar cells fabricated using pulsed laser deposition[J]. Physica Status Solidi, 2016, A213(12): 3231-3237.
-
期刊类型引用(2)
1. 安奥博,陈茂霖,赵立都,马成林,刘祥江. 长测距地基点云密度自适应平面分割算法. 激光技术. 2023(05): 606-612 . 本站查看
2. 陶志勇,李衡,豆淼森,林森. 融合多分辨率特征的点云分类与分割网络. 光电工程. 2023(10): 56-67 . 百度学术
其他类型引用(4)