高级检索

基于光栅阵列的列车高精度定位测速方法研究

王沁宇, 童杏林, 张翠, 邓承伟, 魏敬闯, 许思宇, 张博, 刘先恺

王沁宇, 童杏林, 张翠, 邓承伟, 魏敬闯, 许思宇, 张博, 刘先恺. 基于光栅阵列的列车高精度定位测速方法研究[J]. 激光技术, 2023, 47(1): 46-51. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.007
引用本文: 王沁宇, 童杏林, 张翠, 邓承伟, 魏敬闯, 许思宇, 张博, 刘先恺. 基于光栅阵列的列车高精度定位测速方法研究[J]. 激光技术, 2023, 47(1): 46-51. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.007
WANG Qinyu, TONG Xinglin, ZHANG Cui, DENG Chengwei, WEI Jingchuang, XU Siyu, ZHANG Bo, LIU Xiankai. Research on high-precision positioning and speed measurement method of train based on grating array[J]. LASER TECHNOLOGY, 2023, 47(1): 46-51. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.007
Citation: WANG Qinyu, TONG Xinglin, ZHANG Cui, DENG Chengwei, WEI Jingchuang, XU Siyu, ZHANG Bo, LIU Xiankai. Research on high-precision positioning and speed measurement method of train based on grating array[J]. LASER TECHNOLOGY, 2023, 47(1): 46-51. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.007

基于光栅阵列的列车高精度定位测速方法研究

详细信息
    作者简介:

    王沁宇(1995-), 男, 硕士研究生, 现主要从事光纤传感方面的研究

    通讯作者:

    童杏林, E-mail: tongxinglin@whut.edu.cn

  • 中图分类号: TN247

Research on high-precision positioning and speed measurement method of train based on grating array

  • 摘要: 现有轨道交通定位和测速方法易受到外界环境干扰, 具有不稳定性。为了解决这些难题, 结合光纤光栅绝缘、抗干扰能力强、耐腐蚀等特性, 提出了一种基于弱光栅阵列的结合波分和光时域反射仪技术的高精度列车测速定位系统方案, 通过密集型复用方式实现光栅点的绝对定位需求, 并设计了根据不同光栅分区定位结果及其波长漂移规律来计算实时速度和位置的数据处理方法。为验证系统性能, 搭建了模拟运行环境, 进行了理论分析和实验验证。结果表明, 该方案能实现厘米级的定位精度和1 km/h的测速精度。该研究在轨道交通方面具有广泛的应用前景。
    Abstract: The existing rail transit location and speed measurement method is easy to be interfered by the external environment and has instability. In order to solve these problems, based on the fiber grating with the characteristics of insulation, strong anti-interference, and corrosion resistance, a high precision train speed measurement and location system based on weak grating array combined with wave division and optical time-domain reflectometer (OTDR) technology was proposed. The absolute location requirement of grating points was realized by intensive multiplexing, and a data processing method was designed to calculate real-time speed and position according to the location results of different grating partitions and their wavelength drift rules. In order to verify the performance of the system, a simulated operating environment was built. And theoretical analysis and experimental verification were carried out. Experimental results show that centimeter-level positioning accuracy and 1 km/h speed measurement accuracy can be achieved with the proposed scheme, which has a wide application prospect in rail transit.
  • 图  1   系统框图

    Figure  1.   System block diagram

    图  2   光纤光栅波分/时分复用原理图

    Figure  2.   System block diagram

    图  3   a—光源时域信号  b—光脉冲扫描频域示意图  c—反射信号时域图

    Figure  3.   a—light source time domain signal   b—optical pulse scanning frequency domain diagram   c—reflected signal time domain diagram

    图  4   a—光栅频域光谱  b—光栅时域返回信号

    Figure  4.   a—grating frequency domain spectrum   b—grating time domain return signal

    图  5   波长变化图

    Figure  5.   Diagram of wavelength change

    图  6   实验模拟环境搭建

    Figure  6.   Experimental simulation environment construction

    图  7   反射光谱采样数据

    Figure  7.   Sampling data of reflectance spectrum

    图  8   a—磁铁相斥波长漂移  b—磁铁相吸波长漂移

    Figure  8.   a—magnet repel wavelength shift   b—magnet attracts wavelength shift

    图  9   500 r/min光栅波长漂移

    Figure  9.   500 r/min grating wavelength shift

    图  10   1000 r/min光栅波长漂移

    Figure  10.   1000 r/min grating wavelength shift

    图  11   相邻光栅波长漂移变化

    Figure  11.   Adjacent grating wavelength drift change

    表  1   波长信息序列

    Table  1   Wavelength information sequence

    FBG number physical location/m center wavelength/nm
    1 L λ1-1
    2 L+0.5 λ2-1
    3 L+1 λ1-2
    4 L+1.5 λ2-2
    5 L+2 λ1-3
    6 L+2.5 λ2-3
    7 L+3 λ1-3
    下载: 导出CSV
  • [1] 张世聪. 适用于磁浮列车的测速定位方法研究综述[J]. 铁道标准设计, 2018, 62(10): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201810037.htm

    ZHANG Sh C. Research review of speed measurement and positioning method suitable for maglev trains[J]. Railway Standard Design, 2018, 62(10): 186-191(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201810037.htm

    [2] 张梦乡. 中低速磁浮列车运行控制系统研究[D]. 成都: 西南交通大学, 2019: 24-56.

    ZHANG M X. Research on the operation control system of medium and low speed maglevtrains[D]. Chengdu: South West Jiaotong University, 2019: 24-56(in Chinese).

    [3] 桂鑫, 李政颖, 王洪海, 等. 基于大规模光栅阵列光纤的分布式传感技术及应用综述[J]. 应用科学学报, 2021, 39(5): 747-776. DOI: 10.3969/j.issn.0255-8297.2021.05.004

    GUI X, LI Zh Y, WANG H H, et al. Review of distributed sensing technology and application based on large scale grating array fiber[J]. Journal of Applied Science, 2021, 39(5): 747-776 (in Chin-ese). DOI: 10.3969/j.issn.0255-8297.2021.05.004

    [4]

    LIU H L, ZHU Zh W, ZHENG Y, et al. Experimental study on an FBG strain sensor[J]. Optical Fiber Technology, 2018, 40: 144-151. DOI: 10.1016/j.yofte.2017.09.003

    [5]

    ZHANG D P, LONG Zh Q, XUE S, et al. Optimal design of the absolute positioning sensor for a high speed maglev train and research on its fault diagnosis[J]. Sensors, 2012, 12(12): 10621-10638.

    [6] 罗桂斌. 高速磁浮定位测速系统信号处理技术研究[D]. 长沙: 国防科技大学, 2017: 47-106.

    LUO G B. Research on signal processing technology of high-speed maglev positioning and speed measurement system[D]. Changsha: National University of Defense Technology, 2017: 47-106(in Chin-ese).

    [7] 朱东飞, 王永皎, 杨烨, 等. 基于光栅阵列的城市轨道列车定位与测速方法[J]. 光子学报, 2019, 48(11): 1148014. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201911015.htm

    ZHU D F, WANG Y J, YANG Y, et al. Location and speed measurement method of urban rail train based on grating array[J]. Acta Photonica Sinica, 2019, 48(11): 1148014(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201911015.htm

    [8] 王高, 张梅菊, 黄漫国, 等. 基于正交光纤光栅阵列的负载感知系统研究[J]. 激光技术, 2021, 45(2): 143-146. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.003

    WANG G, ZHANG M J, HUANG M G, et al. Research on load sensing system based on orthogonal fiber Bragg grating array[J]. Laser Technology, 2021, 45(2): 143-146 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.02.003

    [9]

    LOUPOS K, AMDITIS A. Structural health monitoring fiber optic sensors[M]. New York, USA: Springer, 2017: 32-45.

    [10]

    FILOGRANO M L, GUILLEN P C, RODRIGUEZBARRIOS A, et al. Real-time monitoring of railway traffic using fiber Bragg grating sensors[J]. IEEE Sensors Journal, 2012, 12(1): 85-92. DOI: 10.1109/JSEN.2011.2135848

    [11] 武启福. 列车光纤光栅监测系统应用研究[D]. 北京: 北京交通大学, 2015: 13-78.

    WU Q F. Application research of train fiber Bragg grating monitoring system[D]. Beijing: Beijing Jiaotong University, 2015: 13-78(in Chinese).

    [12] 齐先胜, 任志国, 刘峻亦, 等. 激光除锈技术对高速列车集电环性能影响研究[J]. 激光技术, 2019, 43(2): 168-173. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.004

    QI X Sh, REN Zh G, LIU J Y, et al. Research on the influence of laser rust removal technology on the performance of collector rings of high-speed trains[J]. Laser Technology, 2019, 43(2): 168-173(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.02.004

    [13] 杨岗, 王梓丞, 易立富, 等. 一种基于OFDR的高速磁浮列车定位系统[J]. 通信与信息技术, 2020(5): 72-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SCTJ202005044.htm

    YANG G, WANG Z Ch, YI L F, et al. A high-speed maglev train positioning system based on OFDR[J]. Communication and Information Technology, 2020(5): 72-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCTJ202005044.htm

    [14] 董波, 何士雅, 胡曙阳, 等. 基于可调谐激光器的复用传感系统的研究[J]. 激光技术, 2005, 29(6): 608-610. http://www.jgjs.net.cn/article/id/14483

    DONG B, HE Sh Y, HU Sh Y, et al. Research on multiplexed sensing system based on tunable laser[J]. Laser Technology, 2005, 29(6): 608-610(in Chinese). http://www.jgjs.net.cn/article/id/14483

    [15]

    LIU F, TONG X L, ZHANG C, et al. Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing[J]. Optical Fiber Technology, 2018, 45: 47-52.

    [16] 王梦樱, 盛荔, 陶音, 等. 激光器线宽对φ-OTDR系统性能影响的研究[J]. 激光技术, 2016, 40(4): 615-618. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.033

    WANG M Y, SHENG L, KONG Y, et al. Research on the effect of laser linewidth on the performance of φ-OTDR system[J]. Laser Technology, 2016, 40(4): 615-618(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2016.04.033

    [17]

    KOUROUSSIS G, KINET D, MOEYAERT, et al. Railway structure monitoring solutions using fibre Bragg grating sensors[J]. International Journal of Rail Transportation, 2016, 4(3): 135-150.

    [18]

    HE Zh X, ZHANG Zh Y, LI L, et al. A novel fiber Bragg grating vibration sensor with double equal-strength cantilever beams[J]. Optoelectronics Letters, 2021, 17(6): 321-327.

    [19] 张燕君, 谢晓鹏, 毕卫红. 基于弱光栅的高速高复用分布式温度传感网络[J]. 中国激光, 2013, 40(4): 0405006. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304026.htm

    ZHANG Y J, XIE X P, BI W H. High-speed and high-multiplexing distributed temperature sensing network based on weak grating[J]. Chinese Journal of Lasers, 2013, 40(4): 0405006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304026.htm

    [20] 王梓. 基于弱反射光纤光栅的准分布式传感系统信息处理技术研究[D]. 武汉: 华中科技大学, 2011: 67-145.

    WANG Z. Research on information processing technology of quasi-distributed sensing system based on weak reflection fiber Bragg grating[D]. Wuhan: Huazhong University of Science and Technology, 2011: 67-145(in Chinese).

  • 期刊类型引用(5)

    1. 徐一翔,吕勇. 基于生成对抗网络的轻量化图像融合算法. 北京信息科技大学学报(自然科学版). 2024(03): 84-90 . 百度学术
    2. 刘皓皎,刘力双,张明淳. 基于YOLOv5改进的红外目标检测算法. 激光技术. 2024(04): 534-541 . 本站查看
    3. 郭明全,赵景服. YOLOv5-SATC:用于遥感图像目标检测的网络. 信息与电脑(理论版). 2024(15): 18-20 . 百度学术
    4. 吕培强. 电力搭载无人机轻量化应用模式策略研究. 科技创新与应用. 2024(36): 161-164 . 百度学术
    5. 李淼,陈诺,安玮,李博扬,凌强,李卫星. 面向事件相机探测无人机的双视图融合检测方法. 光电工程. 2024(11): 49-59 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-02-23
  • 发布日期:  2023-01-24

目录

    /

    返回文章
    返回